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Introduction Algorithm Speed

Coefficient inverse problem in the wave equation
In a smooth bounded domain Ω ⊂ Rn, it writes for instance,

∂tty(t, x)−∆xy(t, x) + p(x)y(t, x) = f(t, x), (t, x) ∈ (0, T )× Ω,

y(t, x) = g(t, x), (t, x) ∈ (0, T )× ∂Ω

(y(0, x), ∂ty(0, x)) = (y0(x), y1(x)), x ∈ Ω.

or with variable speed
∂tty −∇ · (a(x)∇y) = f, in (0, T )× Ω,

y = g, on (0, T )× ∂Ω,

(y(0), ∂ty(0)) = (y0, 0), in Ω,

• Given data : Source terms f, g ; initial data : (y0, y1) ;

• Unknown : the potential p = p(x) or the speed a = a(x) ;

• Additional measurement : the flux ∂νy(t, x) on (0, T )× ∂Ω.
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Several comments

I The determination in Ω of p or a from an additional measurement

are inverse problems for which uniqueness and stability are

well-known and proved using Carleman estimates.

I Classical reconstruction method : minimizing

J(q) = ‖∂νy[q]− ∂νy[p]‖,

generally not convex may have several local minima.

Algorithms not guaranteed to converge to the global minimum.

I Klibanov, Beilina and co-authors have worked a lot on related

questions...
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The Weighted Energy Inversion Procedure

• Goal : propose an algorithm to compute the unknown coefficient,

satisfying :

I some convergence estimates with no a priori guess ;

I easy implementation & numerical efficiency.

• Core idea of WEIP : build a convergent algorithm of reconstruction

taking advantage of

I the appropriate Carleman estimates to build the cost functional ;

I the structure of the proof of stability to prove the convergence.

4 / 41 Lucie Baudouin WEIP



Introduction Algorithm Speed

Outline

Inverse problem for the wave equation

Generalities

Reconstruction and goals

Lipschitz stability result for the continuous wave equation

Globally convergent reconstruction algorithm

A first algorithm

First numerics

New Algorithm

Reconstruction of the speed

5 / 41 Lucie Baudouin WEIP



Introduction Algorithm Speed Generalities Reconstruction Lipschitz stability

Outline

Inverse problem for the wave equation

Generalities

Reconstruction and goals

Lipschitz stability result for the continuous wave equation

Globally convergent reconstruction algorithm

A first algorithm

First numerics

New Algorithm

Reconstruction of the speed

6 / 41 Lucie Baudouin WEIP



Introduction Algorithm Speed Generalities Reconstruction Lipschitz stability

Determination of the potential in the wave equation
∂tty −∆y + py = f, (0, T )× Ω,

y = g, (0, T )× ∂Ω

(y(0), ∂ty(0)) = (y0, y1), Ω.

Is it possible to retrieve the potential p = p(x), x ∈ Ω from

measurement of the flux ∂νy(t, x) on (0, T )× ∂Ω ?

I Uniqueness : Given p1 6= p2, can we guarantee ∂νy[p1] 6= ∂νy[p2]?

I Stability : If ∂νy[p1] ' ∂νy[p2], can we guarantee that p1 ' p2 ?

I Reconstruction : Given ∂νy[p], can we compute p?

• Known results : Uniqueness (Klibanov ’92) and stability (Yamamoto

’99, Imanuvilov Yamamoto ’01), using Carleman estimates.

• Main question : Reconstruction ; how to compute the potential from

the boundary measurement?
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Natural idea for reconstruction
Given a continuous measurement M [p] = ∂νy[p]|(0,T )×∂Ω

I Discretize the wave equation
∂ttyh −∆hyh + phyh = fh ' f,
yh|(0,T )×∂Ω = gh ' g,
(yh, ∂tyh)(t = 0) = (y0

h, y
1
h) ' (y0, y1).

I Solve the following discrete inverse problem : Find a

potential ph so that the corresponding discrete solution

yh[ph] approximates at best the measurement :

∂hyh[ph]|(0,T )×∂Ω (t, x) 'M [p](t, x)

i.e. ph = Argminqh ‖∂hyh[qh]−M [p]‖∗

Question : Do we get ph ' p?
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First goal :
Analyze the convergence of the discrete inverse problems.

presented in Benasque 2011.

Remarks :

I Natural question for all inverse problems in infinite dimensions :

Finding a source term, a conductivity...

I Depends a priori on the numerical scheme employed.

Main difficulty :

I Different dynamics for the wave equation and its discrete

approximations, cf Ervedoza - Zuazua ’11 :

 Numerical artefacts : High-frequency spurious waves,

generated by the schemes.
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Second goal :
Propose a globally convergent algorithm for reconstruction.

presented in Benasque 2013.

Remarks :

I Reconstruction of the potential, with a single boundary

measurement (during a time T large enough) ;

I Using the observation M [p] = ∂νy[p], a classical method for

solving this inverse problem consists in minimizing

J(q) = ‖∂t (∂νy[q]−M [p]) ‖2L2(Γ0×(0,T ))

 not convex  local minima ;

I Our algorithm will be based on Carleman estimate and the

proof scheme of the stability result.
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Third goal :

Propose a numerically efficient algorithm.

Remarks :

Minimizing a strictly convex and coercive quadratic functional based

on a Carleman estimate means dealing with e2seλψ for large

parameters s and λ...

Idea : Our more recent algorithm will be based on

I a single parameter Carleman estimate,

I a preconditioning of the cost functional (conjugate variable),

I and the splitting of the observations by cut-off.
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Stability Result (Yamamoto ’99, LB-Puel ’01)

Let x0 ∈ RN \ Ω and let Γ0 and T satisfy

{x ∈ ∂Ω, (x− x0) · ν(x) > 0} ⊂ Γ0 ; T > sup
x∈Ω
{|x− x0|}.

Let the potential p, the initial data y0 and the solution y[p] s.t.

‖p‖L∞(Ω) ≤ m, inf
x∈Ω
{|y0(x)|} ≥ γ > 0, y[p] ∈ H1(0, T ;L∞(Ω))

Then, one can prove uniqueness and local Lipschitz stability of

the inverse problem for the wave equation : ∀q ∈ L∞≤m(Ω),

1

C
‖p− q‖L2(Ω) ≤ ‖∂νy[p]− ∂νy[q]‖H1((0,T );L2(Γ0)) .
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Carleman Estimate (Imanuvilov ’02, LB-Puel ’01)

Assuming {x ∈ ∂Ω, (x− x0) · ν(x) > 0} ⊂ Γ0, there exists s0 > 0,

λ > 0 and M = M(s0, λ, T, β, x0) > 0 such that :

s

∫ T

−T

∫
Ω
e2sϕ(|∂tw|2 + |∇w|2) dxdt+ s3

∫ T

−T

∫
Ω
e2sϕ|w|2 dxdt

≤M
∫ T

−T

∫
Ω
e2sϕ|∂ttw−∆xw|2 dxdt+Ms

∫ T

−T

∫
Γ0

e2sϕ |∂νw|2 dσdt

for all s > s0, w ∈ L2(−T, T ;H1
0 (Ω)) and ϕ satisfying

∂ttw −∆xw ∈ L2(Ω× (−T, T )),

∂νw ∈ L2(−T, T ;L2(Γ0)),

w(±T ) = ∂tw(±T ) = 0 in Ω ;


β ∈ (0, 1), C0 large enough,

ψ(x, t) = |x− x0|2 − βt2 + C0,

ϕ(x, t) = eλψ(x,t).

 but also Zhang, Klibanov,...
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Towards a (re)constructive approach

It is easy to check that Z = ∂t (y[p]− y[q]) satisfies
∂ttZ −∆xZ + q(x)Z = (q − p)∂ty[p], (t, x) ∈ (0, T )× Ω,

Z(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω

(Z(0, x), ∂tZ(0, x)) = (0, (q − p)y0), x ∈ Ω.

Main idea : source term (q − p)∂ty[p] less relevant than initial

data (q − p)y0, thanks to the Carleman estimate, whereas

∂νZ = ∂t∂νy[p]− ∂t∂νy[q] on (0, T )× Γ0 is known.

 Hence, we try to fit Z using this information,

and apply the following new Carleman estimate.
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A new Carleman estimate (LB, de Buhan, Ervedoza ’13)

Assuming q ∈ L∞≤m(Ω), Lq = ∂tt −∆x + q(x),

{x ∈ ∂Ω, (x− x0) · ν(x) > 0} ⊂ Γ0 , sup
x∈Ω
|x− x0| < βT

∃s0 > 0, λ > 0 and M = M(s0, λ, T, β, x0,m) > 0 such that

s

∫ T

0

∫
Ω
e2sϕ

(
|∂tw|2 + |∇w|2 + s2|w|2

)
dxdt + s1/2

∫
Ω
e2sϕ(0)|∂tw(0)|2 dx

≤ M

∫ T

0

∫
Ω
e2sϕ|Lqw|2 dxdt+Ms

∫ T

0

∫
Γ0

e2sϕ |∂νw|2 dσdt,

for all s > s0 and w ∈ L2(−T, T ;H1
0 (Ω)) satisfying

Lqw ∈ L2(Ω× (−T, T ))

∂νw ∈ L2((0, T )× Γ0),

w(0, x) = 0, ∀x ∈ Ω.
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Algorithm
Initialization : q0 = 0 or any initial guess.

Iteration : Given qk,
1 - Compute w[qk] the solution of

∂2
tw −∆w + qkw = f, in Ω× (0, T ),

w = g, on ∂Ω× (0, T ),

w(0) = w0, ∂tw(0) = w1, in Ω,

and set µk = ∂t
(
∂νw[qk]− ∂νw[p]

)
on Γ0 × (0, T ).

2 - Introduce the functional

Jk0 (z) =

∫ T

0

∫
Ω
e2sϕ|Lqkz|2 + s

∫ T

0

∫
Γ0

e2sϕ|∂νz − µk|2,

on the space T k = {z ∈ L2(0, T ;H1
0 (Ω)), z(t = 0) = 0,

Lqkz ∈ L2(Ω× (0, T )), ∂νz ∈ L2(Γ0 × (0, T ))}.
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Theorem
Assume the geometric and time conditions. Then, for all

s > 0 and k ∈ N, the functional Jk0 is continuous, strictly convex

and coercive on T k endowed with a suitable weighted norm.

3 - Let Zk be the unique minimizer of the functional Jk0 , and

then set

q̃k+1 = qk +
∂tZ

k(0)

w0
⇔ (q̃k+1 − qk)w0 = ∂tZ

k(0),

where w0 is the initial condition of (1).

4 - Finally, set

qk+1 = Tm(q̃k+1), where Tm(q) =

{
q, if |q| ≤ m,
sign(q)m, if |q| ≥ m.
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Algorithm’s convergence (LB, de Buhan & Ervedoza 13’)

Theorem
Assuming the geometric and time conditions (among others),

there exists a constant M > 0 such that ∀s ≥ s0(m) and k ∈ N,∫
Ω
e2sϕ(0)(qk+1 −Q)2 dx ≤ M√

s

∫
Ω
e2sϕ(0)(qk −Q)2 dx.

In particular, when s is large enough, the algorithm converges.

Remark : This algorithm converges to the global minimum from

any initial guess.
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Numerical Simulations

I Ω = [0, 1], x0 = −0.1, Γ0 = {x = 1}, g = 0, β = 0.99, T = 1.5,

λ = 0.1, s = 1 ;

Γ0
0 1x0

I Discretization with the finite-difference method : N + 1 = 1
h ,

(∆hyh)j =
yj+1−2yj+yj−1

h2 , ∀j ∈ {1, · · · , N}

I Penalization of high-frequencies with an extra regularization

term in the cost funct. :
∫ T

0

∫ 1

0

e2sϕ|h∂+
h ∂tzh|

2 dt, coming from

the discrete Carleman estimates, to have uniformity with respect

to the discretization parameter h. Constraint : sh small enough.

 1D convergence result (LB & Ervedoza ’13)

 2D case (LB & Ervedoza & Osses ’15)
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I Without noise, for p(x) = sin(2πx), one has
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FIGURE – Without (left) and with (right) regularization term.
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I s and λ should be large to ensure the convergence of the

algorithm. But for λ = 1 and s = 3,

max(exp(2sϕ))/min(exp(2sϕ)) = 10110!

I This first version of our theoretical algorithm is totally

useless in practice. We made several improvements to be

able to implement it numerically...

 leading to a new numerically efficient algorithm.
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New Algorithm

The algorithm is modified according to the following items...

I Single parameter Carleman estimate ;

I Preconditioning of the cost functional ;

I Splitting of the observations by cut-off ;

... and the convergence result remains the same.
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A single parameter Carleman estimate

(Lavrentiev Romanov Shishatskii ’86)

Assuming the geometric condition on Γ0, Lq = ∂tt −∆x + q(x),

q ∈ L∞≤m(Ω), supx∈Ω |x− x0| < βT and ϕ(t, x) = |x− x0|2 − βt2,

then ∃s0 > 0 and M = M(s0, T, β, x0,m) > 0 such that

s1/2

∫
Ω

e2sϕ(0)|∂tw(0)|2 dx︸ ︷︷ ︸
initial energy

≤M
∫ T

0

∫
Ω

e2sϕ|Lqw|2 dxdt︸ ︷︷ ︸
source

+ Ms

∫ T

0

∫
Γ0

e2sϕ |∂νw|2 dσdt︸ ︷︷ ︸
observation

+ Ms3

∫∫
{ϕ<0}

e2sϕ|z|2 dxdt
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Preconditioning the new cost functional

We remove some exponential factors by introducing the
conjugate variable y = eϕz in the new functional

J̃k(y) =

∫ T

0

∫
Ω

|Ls,qky|2 + s

∫ T

0

∫
Γ0

|∂νy − e2sϕµk|2 + s3

∫∫
{ϕ<0}

|y|2,

which is minimized on the same set T k as before and where the

conjugate operator is Ls,q = esϕ(∂2
t −∆ + q)e−sϕ.

Nevertheless, there is still an exponential factor in the measurements.
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Dealing finally with the observations
We split the observations in several parts and consider intervals in

which the weight function does not significantly change. To do that :

µkj = ηj(ϕ)µk, ∀τ ∈ R,
N∑
j=1

ηj(τ) = η(τ),

where the ηj are the following cut-off functions (ε = infΩ |x− x0|2) :

0 τε

1
η3 η2 η1

η

0 1

{ϕ < 0}
η(ϕ) = 0

ϕ
=

0

ϕ
=
ε

ηj
(ϕ

) =
1

x0

T

Yj minimizer of J̃k[µkj ] ⇒ Y =
∑N
j=1 Yj minimizer of J̃k[µk].
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Discretization of the problem

I Ω = [0, 1], x0 = −0.3, Γ0 = {x = 1}, β = 0.99, T = 1.3, s = 100,

f = 0, g = 2, u0(x) = 2 + sin(xπ) and u1 = 0.

Γ0
0 1

x0

I To avoid the inverse crime, we use 6= schemes and 6= meshes in

the direct and inverse problems :

I direct problem : finite differences in space h = 0.00025,

implicit theta scheme in time τ = 0.00033 ;
I inverse problem : finite differences in space h = 0.05,

explicit Euler scheme in time τ = 0.05, that is CFL = 1.
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Illustration of the convergence of the algorithm

(a) q0 (b) q1

(c) q2 (d) q3
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(a) q00 = q0 (b) q01 (c) q02

(d) q03 (e) q04 (f) q05 = q1

29 / 41 Lucie Baudouin WEIP



Introduction Algorithm Speed Idea and Algo First numerics New Algorithm

(a) p = −x (b) p heaviside

(c) p(x) = sin( x
1−x )
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(a) p = −x (b) p = gate(x)

(c) p(x) = sin( x
1−x )
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Wrong choices of the parameters

(a) Wrong choice of m (b) u0 vanishes at x = 0.5

(c) No viscous term (d) T = 0.9 < 1
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With noise on the measurement of the flux

s = 10 and the noise is multiplicative : 1%, 5%, 10%.

Taking s too large seems to amplify the effects of the noise...
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Numerical results in 2D
Ω = [0, 1]2, x0 = (−0.3,−0.3) and Γ0 = {x = 1} ∪ {y = 1}

Exact potentials (top) vs Numerical potentials (bottom).
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(a) Exact potential (b) 3D view

(c) Numerical (d) 3D view
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(a) Exact potential (b) 3D view

(c) Numerical (d) 3D view
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Recovery of the main coefficient
Wave equation with variable speed :

∂tty −∇ · (a(x)∇y) = f, in (0, T )× Ω,

y = g, on (0, T )× ∂Ω,

y(0) = y0, ∂ty(0) = 0, in Ω,

• Given data : Source terms f, g, initial data : (y0, 0),

boundary value a = a on ∂Ω.

• Unknown : the speed a = a(x), inside Ω.

• Additional measurement : ∂νy(t, x) on (0, T )× ∂Ω.

Goal : Find the variable speed a = a(x).

 Application in medical imaging.
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Setting and assumptions

Ω

Γ0

T

ν(x)x

x0
Geometric and time conditions :

∃x0 6∈ Ω, such that

Γ0 ⊃ {x ∈ ∂Ω, (x− x0) · ν(x) ≥ 0},

T >
supx∈Ω |x− x0|√

β
.

I Regularity assumption on the solution y[a]

I Initial orientation condition : |∇w0(x) · (x− x0)| ≥ r0 > 0 in Ω.

I Vα0,α1,β0,a = {a ∈ C1(Ω), 0 < α0 ≤ a ≤ α1,

a+ 1
2∇a · (x− x0) ≥ β0 > 0 ae in Ω, a = a on ∂Ω}.

 Ongoing work.
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Idea
The speed reconstruction algorithm is based on the fact that if

y[a], y[ak], are the solution of the wave equation, then

zk = ∂2
t

(
y[ak]− y[a]

)
solves

∂2
t z
k −∇ · (ak∇zk) = gk, in (0, T )× Ω,

zk = 0, on (0, T )× ∂Ω,

zk(0, ·) = zk0 , ∂tz
k(0, ·) = 0, in Ω,

where

gk = ∇ · ((ak − a)∇∂2
t y[a]), zk0 = ∇ · ((ak − a)∇w0),
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The algorithm is constructed on the minimization of

Js,ak [µ](z) =
1

2

∫ T

0

∫
Ω
e2sϕ|∂2

t z −∇ · (ak∇z)|2 dxdt

+
s

2

∫ T

0

∫
Γ0

e2sϕ|∂νz − µ|2 dσdt+
s3

2

∫∫
Q
e2sϕ|z|2 dxdt

in order to approximate z̃k = η(ϕ)zk, that satisfies :

I z̃k(0, ·) = η(ϕ(0, ·))zk0 = ∇ · ((ak − a)∇w0) ;

I z̃k = η(ϕ)zk vanishes in Q ;

I ∂nz̃
k = µ̃k in (0, T )× Γ0.

Finally, we will need to study the first order differential equation

that encapsulate ak − a.

? ? ?
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Thank you for your attention.

?

Related articles
I Weighted Energy Inversion Procedure,

L. B., M. de Buhan, S. Ervedoza & A. Osses, in preparation.

I Convergent algorithm based on Carleman estimates for the recovery of a potential in the wave equation,
L. B., M. de Buhan & S. Ervedoza, SINUM 2017.

I Stability of an inverse problem for the discrete wave equation and convergence results,
L. B., S. Ervedoza & A. Osses, JMPA 2015.

I Global Carleman estimates for waves and applications,
L. B., M. de Buhan & S. Ervedoza, Comm. PDE 2013.

I Convergence of an inverse problem for discrete wave equations,
L. B. & S. Ervedoza, SICON 2013.
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