A mean-field game model for pedestrian flow with minimal time

Guilherme Mazanti joint work with Filippo Santambrogio

VII Partial differential equations, optimal design and numerics Benasque — August 25th, 2017

LMO, Université Paris-Sud Université Paris-Saclay

Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Outline				

- 2 Existence of an equilibrium
- 3 The MFG system
- Open problems and ongoing work

5 Simulations

Introduction •••••	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introdu Macroscopi	ction ic models for pedestrian	flow		

- Goal: propose and study a nice mean-field game (MFG) model for pedestrian flow in a certain domain Ω ⊂ ℝ^d (or also a graph, a manifold, etc.)
- Macroscopic models for pedestrian flow:

 $\partial_t \rho + \operatorname{div}(\rho v) = 0.$

- $\rho(t, x)$: density of people at position $x \in \Omega$ in time t.
- v(t, x, ρ): velocity.
- Conservation law for pedestrians (recall Tuesday's talk by R. Colombo).
- How do people choose v?
- The MFG approach: people solve an optimal control problem, which depends on the average behavior of other people.

Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introduc Mean field g				

Mean field games are differential games with a continuum of players / agents, assumed to be rational, indistinguishable, and influenced only by the average behavior of other players.

Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introduce Mean field g				

Mean field games are differential games with a continuum of players / agents, assumed to be rational, indistinguishable, and influenced only by the average behavior of other players.

- continuum of players: macroscopic model, density ρ.
- differential games: players' dynamics given by a controlled differential equation $\dot{\gamma}(t) = f(t, \gamma(t), u(t))$.
- rationallity: players minimize some cost.
- indistinguishability: *f* and the cost are the same for all players.
- average behavior: *f* and the cost depend on the current player's state γ(*t*) and on ρ.

Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introduc Mean field g				

Mean field games are differential games with a continuum of players / agents, assumed to be rational, indistinguishable, and influenced only by the average behavior of other players.

- continuum of players: macroscopic model, density ρ.
- differential games: players' dynamics given by a controlled differential equation $\dot{\gamma}(t) = f(t, \gamma(t), u(t))$.
- rationallity: players minimize some cost.
- indistinguishability: *f* and the cost are the same for all players.
- average behavior: *f* and the cost depend on the current player's state γ(*t*) and on ρ.

Fixed point: given ρ , players evolve according to optimal trajectories, and this evolution gives ρ .

Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introduo Mean field g				

Origins of MFGs: [Lasry, Lions; 2006], [Lasry, Lions; 2006], [Lasry, Lions; 2007], [Huang, Malhamé, Caines; 2006], [Huang, Caines, Malhamé; 2007]. Motivation from problems in economics and engineering.

Goal: provide an approximation for Nash equilibria of games with *N* symmetric players for large *N*.

MFG model for pedestrian flow:

- People move in $\Omega \subset \mathbb{R}^d$, non-empty, open, and bounded.
- Goal: leave Ω through $\Gamma \subset \partial \Omega$, non-empty and closed.
- Initially: $\rho_0 \in \mathcal{P}(\overline{\Omega})$.
- Dynamics: people choose their speed up to a maximal value $\dot{\gamma}(t) = f(\rho_t, \gamma(t))u(t), \quad u(t) \in \overline{B}(0, 1) = \text{closed unit ball.}$

Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introdu Minimal time	ction e mean field games			

MFG model for pedestrian flow:

- People move in $\Omega \subset \mathbb{R}^d$, non-empty, open, and bounded.
- Goal: leave Ω through $\Gamma \subset \partial \Omega$, non-empty and closed.
- Initially: $\rho_0 \in \mathcal{P}(\overline{\Omega})$.
- Dynamics: people choose their speed up to a maximal value $\dot{\gamma}(t) = f(\rho_t, \gamma(t))u(t), \quad u(t) \in \overline{B}(0, 1) = \text{closed unit ball.}$ Typically:

$$f(\rho, x) = K\left[\int_{\overline{\Omega}} \chi(x-y) \,\mathrm{d}\rho(y)\right],$$

- χ: convolution kernel,
- K: positive decreasing function.

Introduction ○○○○●	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introduce Minimal time	ction e mean field games			

Most MFGs in the literature consider optimization criteria in fixed time T (same for all agents).

Our model:

 Optimization criterion: agents want to leave Ω through Γ in minimal time.

$$\begin{split} \inf\{T \geq 0 \mid \dot{\gamma}(t) &= f(\rho_t, \gamma(t))u(t), \ u : \mathbb{R}_+ \to \overline{B}(0, 1), \\ \gamma(0) &= x, \ \gamma(T) \in \Gamma, \ \gamma(t) \in \overline{\Omega} \ \text{for} \ t \in [0, T], \\ \dot{\gamma}(t) &= 0 \ \text{for} \ t > T \}. \end{split}$$

Introduction ○○○○●	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations
Introduce Minimal time	ction e mean field games			

Most MFGs in the literature consider optimization criteria in fixed time T (same for all agents).

Our model:

• Optimization criterion: agents want to leave Ω through Γ in minimal time.

 $\inf\{T \ge 0 \mid \dot{\gamma}(t) = f(\rho_t, \gamma(t))u(t), u : \mathbb{R}_+ \to \overline{B}(0, 1),$ $\gamma(0) = x, \gamma(T) \in \Gamma, \ \gamma(t) \in \overline{\Omega} \text{ for } t \in [0, T],$ $\dot{\gamma}(t) = 0 \text{ for } t > T\}.$

• For simplicity, $\Gamma = \partial \Omega$ in this talk (room with no walls).

Main question: characterize the evolution of the density ρ .

Introduction COOCO Existence of an equilibrium The Lagrangian approach Existence of an equilibrium The Lagrangian approach

 Eulerian approach: ρ : ℝ₊ → 𝒫(Ω) is a curve on the set of measures. Motion is described by the density and the velocity field of the population. Introduction Existence of an equilibrium The MFG system Open problems and ongoing work Simulations oco Existence of an equilibrium The Lagrangian approach

- Eulerian approach: ρ : ℝ₊ → 𝒫(Ω) is a curve on the set of measures. Motion is described by the density and the velocity field of the population.
- Lagrangian approach: Q ∈ P(C), where C = C(ℝ₊, Ω), is a measure on the set of curves. Motion is described by the trajectory of each agent.

Lagrangian framework for mean field games already used in the literature, cf. e.g. the survey in [Benamou, Carlier, Santambrogio; 2017].

Link between Eulerian and Lagrangian: $\rho_t = e_{t\#}Q$, where $e_t : \mathcal{C} \to \overline{\Omega}$ is the evaluation at time *t* of a curve, $e_t(\gamma) = \gamma(t)$.

Introduction 00000 Existence of an equilibrium

The MFG system

Open problems and ongoing work

Simulations

Existence of an equilibrium The Lagrangian approach

Definition

A measure $Q \in \mathcal{P}(\mathbb{C})$ is a Lagrangian equilibrium of the mean field game if $e_{0\#}Q = \rho_0$ and Q-almost every $\gamma \in \mathbb{C}$ is optimal for inf{ $T \ge 0 \mid \dot{\gamma}(t) = f(e_{t\#}Q, \gamma(t))u(t), \ u : \mathbb{R}_+ \to \overline{B}(0, 1),$ $\gamma(0) = x, \ \gamma(T) \in \partial\Omega, \ \gamma(t) \in \overline{\Omega} \text{ for } t \in [0, T],$ $\dot{\gamma}(t) = 0 \text{ for } t > T$ }.

In the sequel, we consider

- the existence of a Lagrangian equilibrium;
- the characterization of equilibria by the MFG system;
- open problems and simulations.

Introduction

Existence of an equilibrium

The MFG system

Open problems and ongoing work

Simulations

Existence of an equilibrium

Theorem

Assume that $f : \mathcal{P}(\overline{\Omega}) \times \overline{\Omega} \to \mathbb{R}_+$ is Lipschitz continuous and $f_{\max} = \sup_{\substack{\mu \in \mathcal{P}(\overline{\Omega}) \\ x \in \overline{\Omega}}} f(\mu, x) < +\infty, \quad f_{\min} = \inf_{\substack{\mu \in \mathcal{P}(\overline{\Omega}) \\ x \in \overline{\Omega}}} f(\mu, x) > 0.$ Then there exists a Lagrangian equilibrium $Q \in \mathcal{P}(\mathbb{C})$ for this game.

With no loss of generality (change in time scale): $f_{max} = 1$.

Introduction

Existence of an equilibrium

The MFG system

Open problems and ongoing work

Simulations

Existence of an equilibrium

Theorem

Assume that $f : \mathfrak{P}(\overline{\Omega}) \times \overline{\Omega} \to \mathbb{R}_+$ is Lipschitz continuous and

 $f_{\max} = \sup_{\substack{\mu \in \mathcal{P}(\overline{\Omega}) \\ x \in \overline{\Omega}}} f(\mu, x) < +\infty, \quad f_{\min} = \inf_{\substack{\mu \in \mathcal{P}(\overline{\Omega}) \\ x \in \overline{\Omega}}} f(\mu, x) > 0.$

Then there exists a Lagrangian equilibrium $Q \in \mathcal{P}(\mathbb{C})$ for this game.

With no loss of generality (change in time scale): $f_{max} = 1$.

Distance in $\mathcal{P}(\overline{\Omega})$: Wasserstein distance $W_1(\mu, \nu) = \min_{\substack{\gamma \in \mathcal{P}(\overline{\Omega} \times \overline{\Omega}) \\ \pi_1 \# \gamma = \mu, \ \pi_2 \# \gamma = \nu}} \int_{\overline{\Omega} \times \overline{\Omega}} |x - y| \, d\gamma(x, y).$ Introduction Existence of an equilibrium The MFG system Open problems and ongoing work Simulations oco Existence of an equilibrium

Strategy of the proof:

Strategy of the proof

For fixed *Q* ∈ 𝒫(𝔅), let Γ_Q ⊂ 𝔅 be the set of all optimal trajectories for the measure *Q*. Define _____

 $F(Q) = \{Q \mid e_{0\#}Q = \rho_0 \text{ and } Q(\Gamma_Q) = 1\}.$ Equilibrium \iff fixed point of the set-valued map *F*, i.e.,

 $Q \in F(Q)$.

• Prove required properties of *F* to apply Kakutani fixed point theorem. Needs some properties of the value function

 $\begin{aligned} \tau_{\mathcal{Q}}(t_0, x_0) &= \inf\{T \geq 0 \mid \dot{\gamma}(t) = f(e_{t\#}\mathcal{Q}, \gamma(t))u(t), \ u : \mathbb{R}_+ \to \overline{B}(0, 1), \\ \gamma(t_0) &= x_0, \ \gamma(t_0 + T) \in \partial\Omega, \ \gamma(t) \in \overline{\Omega} \text{ for } t \in [t_0, t_0 + T], \\ \dot{\gamma}(t) &= 0 \text{ for } t > t_0 + T \}. \end{aligned}$

Strategy of the proof

Dynamics: $\dot{\gamma}(t) = f(e_{t\#}Q, \gamma(t))u(t)$ with f and u bounded by 1 \implies optimal trajectories are 1-Lipschitz continuous.

We consider only $Q \in \mathcal{P}(\mathcal{C})$ supported on 1-Lipschitz continuous trajectories. Let Ω be the set of such Q.

Existence of an equilibrium Strategy of the proof

Dynamics: $\dot{\gamma}(t) = f(e_{t\#}Q, \gamma(t))u(t)$ with *f* and *u* bounded by 1 \implies optimal trajectories are 1-Lipschitz continuous.

We consider only $Q \in \mathcal{P}(\mathcal{C})$ supported on 1-Lipschitz continuous trajectories. Let Ω be the set of such Q.

Proposition

- The inf in τ_Q is a min, τ_Q is bounded and globally Lipschitz continuous, and Ω ∋ Q ↦ τ_Q(t, x) is Lipschitz continuous, uniformly in x and locally uniformly in t;
- The set of optimal trajectories Γ_Q is compact $\forall Q \in \Omega$ and $\Omega \ni Q \mapsto \Gamma_Q$ is upper semi-continuous;
- F(Q) is non-empty, compact, and convex ∀Q ∈ Q, and F is upper semi-continuous.

These properties yield the existence of a fixed point for F.

Introduction	Existence of an equilibrium	The MFG system ●○○○○○○	Open problems and ongoing work	Simulations
	G system			

We have proved the existence of a Lagrangian equilibrium to the minimal time mean field game.

- Advantage: easier than to prove than in the Eulerian approach. Application of Kakutani fixed point theorem requires fewer properties of the optimal trajectories.
- Drawback: we have no information on $\rho_t = e_{t\#}Q$.

Goal: characterize τ_Q and ρ as solutions of a system of PDEs.

Introduction	Existence of an equilibrium	The MFG system ○●○○○○○	Open problems and ongoing work	Simulations
The MF	G system			

We use extra assumptions:

Hypotheses

Hypotheses

- $f: \mathcal{P}(\overline{\Omega}) \times \overline{\Omega} \to \mathbb{R}^*_+$ is given by $f(\mu, x) = K[E(\mu, x)]$, with $E(\mu, x) = \int_{\overline{\Omega}} \chi(x - y)\eta(y)d\mu(y)$, $K \in \mathcal{C}^{1,1}(\mathbb{R}_+, \mathbb{R}^*_+)$ is bounded, $\chi \in \mathcal{C}^{1,1}(\mathbb{R}^d, \mathbb{R}_+)$, and $\eta \in \mathcal{C}^{1,1}(\mathbb{R}^d, \mathbb{R}_+)$ with $\eta(x) = 0$ and $\nabla \eta(x) = 0$ for $x \in \partial \Omega$.
- Ω satisfies the uniform exterior sphere condition: R^d \ Ω is a union of closed balls with the same radius.

Introduction	Existence of an equilibrium	The MFG system ○○●○○○○	Open problems and ongoing work	Simulations
The ME	Gevetem			

Theorem

Main result

Under the previous assumptions, τ_Q and ρ solve the MFG system $\begin{cases}
\partial_t \rho(t, x) - \operatorname{div}_x \left[f(\rho_t, x) \frac{\nabla_x \tau_Q(t, x)}{|\nabla_x \tau_Q(t, x)|} \rho(t, x) \right] = 0, & \mathbb{R}_+ \times \Omega, \\
-\partial_t \tau_Q(t, x) + |\nabla_x \tau_Q(t, x)| f(\rho_t, x) - 1 = 0, & \mathbb{R}_+ \times \Omega, \\
\rho(0, x) = \rho_0(x), & \overline{\Omega}, \\
\tau_Q(t, x) = 0, & \mathbb{R}_+ \times \partial\Omega.
\end{cases}$

Continuity equation satisfied in the sense of distributions, Hamilton–Jacobi equation satisfied in the viscosity sense.

Introduction 00000	Existence of an equilibrium	The MFG system ○○●○○○○	Open problems and ongoing work	Simulations
The ME	Gevetam			

Theorem

Main result

Under the previous assumptions, τ_Q and ρ solve the MFG system $\begin{cases}
\partial_t \rho(t, x) - \operatorname{div}_x \left[f(\rho_t, x) \frac{\nabla_x \tau_Q(t, x)}{|\nabla_x \tau_Q(t, x)|} \rho(t, x) \right] = 0, & \mathbb{R}_+ \times \Omega, \\
-\partial_t \tau_Q(t, x) + |\nabla_x \tau_Q(t, x)| f(\rho_t, x) - 1 = 0, & \mathbb{R}_+ \times \Omega, \\
\rho(0, x) = \rho_0(x), & \overline{\Omega}, \\
\tau_Q(t, x) = 0, & \mathbb{R}_+ \times \partial\Omega.
\end{cases}$

Continuity equation satisfied in the sense of distributions, Hamilton–Jacobi equation satisfied in the viscosity sense. Velocity field: $v(t, x, \rho_t) = -f(\rho_t, x) \frac{\nabla_x \tau_Q(t, x)}{|\nabla_x \tau_Q(t, x)|}$.

Hamilton–Jacobi equation can be obtained by standard techniques on optimal control using a dynamic programming principle. But the situation is more subtle for the continuity equation. We need some properties of τ_{O} .

Hamilton–Jacobi equation can be obtained by standard techniques on optimal control using a dynamic programming principle. But the situation is more subtle for the continuity equation. We need some properties of τ_Q .

$$-\partial_t \tau_Q(t,x) + |\nabla_x \tau_Q(t,x)| f(\rho_t,x) - 1 = 0.$$

Proposition

- There exists c > 0 such that, if $\partial_t \tau_Q(t, x)$ exists, then $\partial_t \tau_Q(t, x) \ge c 1$.
- If τ_Q is differentiable at (t, x), then $|\nabla_x \tau_Q(t, x)| \ge c > 0$.
- $\tau_Q(t+h,\gamma(t+h)) + h = \tau_Q(t,\gamma(t))$ for every $\gamma \in \Gamma_Q$ (= optimal).

Introduction	Existence of an equilibrium	The MFG system ○○○○●○○	Open problems and ongoing work	Simulations
The MI	FG system			

Corollary

If
$$\gamma \in \Gamma_Q$$
 and τ_Q is differentiable at $(t, \gamma(t))$, then
 $\dot{\gamma}(t) = -f(\rho_t, \gamma(t)) \frac{\nabla_X \tau_Q(t, \gamma(t))}{|\nabla_X \tau_Q(t, \gamma(t))|}.$

 τ_Q is Lipschitz, hence differentiable a.e., but it may be nowhere differentiable along a particular trajectory... we still need more properties of τ_Q and the optimal trajectories, which we obtain by applying Pontryagin Maximum Principle.

Introduction	Existence of an equilibrium	The MFG system ○○○○○●○	Open problems and ongoing work	Simulations
The M	-G system			

Proposition

Strategy of the proof

$$\begin{split} &If \gamma \in \Gamma_Q, \, then \, \gamma \in \mathbb{C}^{1,1}([0, \tau_Q(0, \gamma(0))), \Omega), \, the \, optimal \, control \\ & u \in \mathbb{C}^{1,1}([0, \tau_Q(0, \gamma(0))), \mathbb{S}^{d-1}), \, and \\ & \left\{ \begin{array}{l} \dot{\gamma}(t) = f(\rho_t, \gamma(t))u(t), \\ \dot{u}(t) = -\operatorname{Proj}_{T_{u(t)}\mathbb{S}^{d-1}} \nabla_X f(\rho_t, \gamma(t)). \end{array} \right. \end{split}$$

Introduction 00000	Existence of an equilibrium	The MFG system ○○○○○●○	Open problems and ongoing work	Simulations
The M	FG system			

Strategy of the proof

Proposition

$$\begin{split} &If \gamma \in \Gamma_Q, \, then \, \gamma \in \mathbb{C}^{1,1}([0,\tau_Q(0,\gamma(0))),\Omega), \, the \, optimal \, control \\ & u \in \mathbb{C}^{1,1}([0,\tau_Q(0,\gamma(0))),\mathbb{S}^{d-1}), \, and \\ & \left\{ \begin{array}{l} \dot{\gamma}(t) = f(\rho_t,\gamma(t))u(t), \\ \dot{u}(t) = -\operatorname{Proj}_{\mathcal{T}_{u(t)}\mathbb{S}^{d-1}} \nabla_X f(\rho_t,\gamma(t)). \end{array} \right. \end{split}$$

Recall:
$$f(\mu, x) = \mathcal{K}[E(\mu, x)], E(\mu, x) = \int_{\overline{\Omega}} \chi(x - y) \eta(y) d\mu(y).$$

Proposition

Suppose $Q \in \Omega$ is a Lagrangian equilibrium.

- $(t, x) \mapsto f(e_{t\#}Q, x)$ is also $\mathbb{C}^{1,1}$.
- τ_Q is locally semiconcave.

w semiconcave:
$$x \mapsto w(x) - C |x|^2$$
 is concave for some $C > 0$.

Introduction	Existence of an equilibrium	The MFG system ○○○○○○●	Open problems and ongoing work	Simulations
The MF	G system			

Proposition

Strategy of the proof

Let $Q \in \Omega$ be a Lagrangian equilibrium and $\gamma \in \Gamma_Q$ (= optimal). Then, for every $t \in (0, \tau_Q(0, \gamma(0))), \tau_Q$ admits a normalized gradient at $(t, \gamma(t))$ and the optimal trajectory satisfies $\dot{\gamma}(t) = -f(e_{t\#}Q, \gamma(t)) \frac{\nabla_X \tau_Q(t, \gamma(t))}{|\nabla_X \tau_Q(t, \gamma(t))|}.$

 \implies Continuity equation with velocity $-f(e_{t\#}Q, x) \frac{\nabla_x \tau_Q(t,x)}{|\nabla_x \tau_Q(t,x)|}$.

Introduction	Existence of an equilibrium	The MFG system ○○○○○○●	Open problems and ongoing work	Simulations
The MF	-G system			

Proposition

Strategy of the proof

Let $Q \in \Omega$ be a Lagrangian equilibrium and $\gamma \in \Gamma_Q$ (= optimal). Then, for every $t \in (0, \tau_Q(0, \gamma(0))), \tau_Q$ admits a normalized gradient at $(t, \gamma(t))$ and the optimal trajectory satisfies $\dot{\gamma}(t) = -f(e_{t\#}Q, \gamma(t)) \frac{\nabla_X \tau_Q(t, \gamma(t))}{|\nabla_X \tau_Q(t, \gamma(t))|}.$

 \implies Continuity equation with velocity $-f(e_{t\#}Q, x) \frac{\nabla_x \tau_Q(t,x)}{|\nabla_x \tau_Q(t,x)|}$.

Definition

We say that τ_Q admits a normalized gradient at (t, x) if the set $\left\{ \frac{p_1}{|p_1|} \in \mathbb{S}^{d-1} \mid p_1 \neq 0 \text{ and } \exists p_0 \in \mathbb{R} \text{ s.t. } (p_0, p_1) \in D^+ \tau_Q(t, x) \right\}$ contains exactly one element $(D^+ \tau_Q \text{ is the super-differential of } \tau_Q)$. The unique element of this set is denoted by $\frac{\nabla_x \tau_Q(t, x)}{|\nabla_x \tau_Q(t, x)|}$.

Open problems and ongoing work

Ongoing work:

- Γ ⊊ ∂Ω. Existence of Lagrangian equilibrium and Hamilton–Jacobi equation with no extra difficulty. But the optimization problem now has state constraints.
- (with Samer Dweik) Regularity properties of ρ:

$$\rho_0 \in L^p \stackrel{?}{\Rightarrow} \rho_t \in L^p.$$

Open problems:

- Uniqueness.
- More general costs with free final time.
- Obtain this model as limit of microscopic models with large population.
- Numerical methods for this model.
- Stochastic dynamics (more classical in MFGs).

Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations ●○○
Simula One-dimen	tions Isional case			

$$\begin{array}{c} \Omega = (0,1);\\ \Gamma = \partial \Omega;\\ \rho_0 = \delta_\ell;\\ \ell \in (0,1). \end{array}$$

$$\chi(x) = \begin{cases} \frac{1+\cos(\frac{\pi x}{\varepsilon})}{2\varepsilon}, & \text{if } |x| < \varepsilon, \\ 0, & \text{if } |x| \ge \varepsilon, \end{cases} \\ \eta(x) = \begin{cases} \frac{1-\cos(\frac{\pi d(x,\partial \Omega)}{\varepsilon})}{2}, & \text{if } d(x,\partial \Omega) < \varepsilon, \\ 1, & \text{if } d(x,\partial \Omega) \ge \varepsilon, \end{cases} \\ \mathcal{K}(x) = \frac{1}{1+\left(\frac{2x}{15}\right)^4}, \\ \varepsilon = \frac{1}{10}. \end{cases}$$

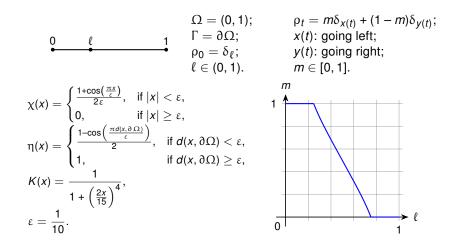
Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations •••
Simula One-dimen	tions sional case			

$$\begin{array}{l} \Omega = (0,1); & \rho_t = m\delta_{x(t)} + (1-m)\delta_{y(t)}; \\ & \Gamma = \partial\Omega; & x(t): \text{ going left}; \\ & \rho_0 = \delta_\ell; & y(t): \text{ going right}; \\ & \ell \in (0,1). & m \in [0,1]. \end{array}$$

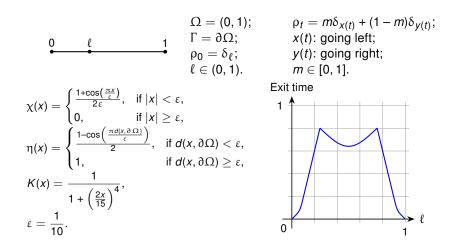
$$\begin{array}{l} \chi(x) = \begin{cases} \frac{1+\cos(\frac{\pi x}{\varepsilon})}{2\varepsilon}, & \text{if } |x| < \varepsilon, \\ 0, & \text{if } |x| \geq \varepsilon, \\ 0, & \text{if } |x| \geq \varepsilon, \end{cases} \\ \eta(x) = \begin{cases} \frac{1-\cos(\frac{\pi d(x,\partial\Omega)}{\varepsilon})}{2}, & \text{if } d(x,\partial\Omega) < \varepsilon, \\ 1, & \text{if } d(x,\partial\Omega) \geq \varepsilon, \end{cases} \\ \mathcal{K}(x) = \frac{1}{1+\left(\frac{2x}{15}\right)^4}, \\ \varepsilon = \frac{1}{10}. \end{cases}$$

A١

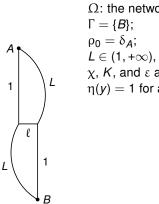
Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations •••
Simulat One-dimens				



Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations •••
Simulat One-dimens				



Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations 000
Simulat Braess-type				



$$\Omega: \text{ the network;}$$

$$\Gamma = \{B\};$$

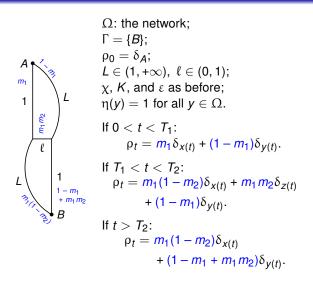
$$p_0 = \delta_A;$$

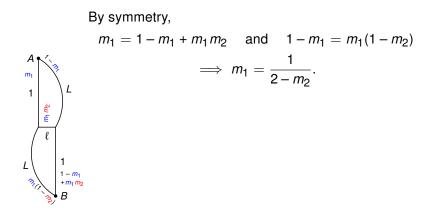
$$L \in (1, +\infty), \ \ell \in (0, 1);$$

$$\chi, K, \text{ and } \varepsilon \text{ as before;}$$

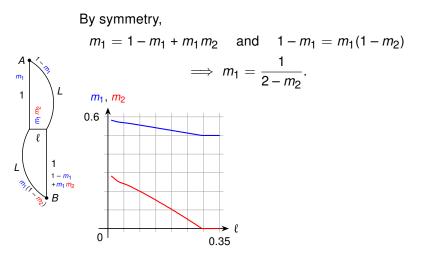
$$\eta(y) = 1 \text{ for all } y \in \Omega.$$

Introduction 00000	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations 000
Simulat				

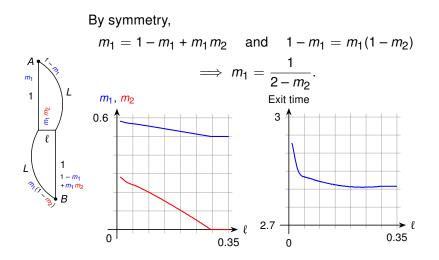




Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations ○O●
Simulat Braess-type				



Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations ○O●
Simulat Braess-type				



Introduction	Existence of an equilibrium	The MFG system	Open problems and ongoing work	Simulations