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Experiment

Experimentally it has been observed that a charged droplet is
stable until its charge reaches a specific threshold.

When the charge (or the voltage) is too big, a Taylor cone appears
and a liquid jet is developed, which takes away a small fraction of
the volume but a large fraction of the charge (see vanden-Broeck,
Keller 1980; Miksis 1981, etc...).
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Experiment

Figure: creation of a liquid jet
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The model problem

In 1882 Lord Rayleight proposed a model for charged droplets at
equilibrium.

Up to constants depending on the material, the associated energy
is:

FQ(E ) = P(E ) + Q2 inf
µ:µ(E)=1

∫
E

∫
E

dµ(x) dµ(y)

|x − y |

where E ⊂ R3 is the droplet and Q is the total charge.
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Notice that the nonlocal functional

I(E ) = inf
µ(E)=1

∫
E

∫
E

dµ(x) dµ(y)

|x − y |

is the inverse of the capacity of E , that is

1

I(E )
= inf

{∫
R3

|∇f |2 dx : f ∈ C 1
c (R3), f ≥ 0, f ≥ 1 on E

}
.
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The Euler-Lagrange equation of FQ , with volume constraint, reads

−∆v = 0 in R3 \ E

v = inf
µ:µ(E)=1

∫
E

∫
E

dµ(x) dµ(y)

|x − y |
in E

lim
|x |→+∞

v(x) = 0

κ = Q2|∇v |2 + λ on ∂E

where λ is a Lagrange multiplier and

v(x) =

∫
E

dµmin(y)

|x − y |

is the associated Coulombic potential.
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It is natural to study (local) minimizers of FQ with a volume
constraint, in relation to the charge Q.

Notice that the ball is the unique minimizer of P(E ) among sets of
fixed volume (isoperimetric inequality), but is also the unique
maximizer of I(E ) (Szegö 1930).

The functional FQ has an attractive/repulsive character, with the
two terms competing with eachother. One expects that the first
term wins only when the charge Q is small enough.
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Linear stability of the ball

An important stability result is:

Theorem (Fontelos, Friedman 2004)

For all m > 0 there exists Q(m) such that the ball is a linearly
stable critical point of FQ if Q < Q(m), while it is unstable if
Q > Q(m).
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Nonexistence of minimizers

Note that linear stability does not imply nonlinear stability. Indeed,

Theorem (Goldman,N.,Ruffini 2015)

For all m,Q positive, the minimum problem

min
E : |E |=m

FQ(E )

has no solution (not even local minimizers).

This means that the ball of volume m, even if is linearly stable
when Q is not too large, is always linearly unstable.
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One can even construct competitors of the ball, with lower energy,
which are graphs over the ball.

It is not clear why this nonlinear instability is not observed in
experiments. Maybe there are some extra terms in the energy
which have been neglected (entropy, elastic energy).
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Proof

The idea behind this result is that one can concentrate all the
charge in little droplets with very small volume and perimeter, so
that the two terms in the energy FQ essentially decouple.

It is enough to observe that a ball of radius R and charge Q has
energy FQ(BR) = 4πR2 + cQ2/R, where c is an absolut constant.
Hence, N balls of radius R, charge Q/N and mutual distance at
least D have energy

FQ(N BR) = 4πN R2 + c
Q2

N R
+ ε(D),

with ε(D)→ 0 as D →∞.

Choosing R = 1/Nα, with α ∈ (1/2, 1), it then follows

lim
N→∞

FQ(N BR) = 0.
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Riesz potentials

A similar result holds for the more general energy

FQ,α(E ) = P(E ) + Q2Iα(E ) α ∈ (0, n)

where now E ⊂ Rn and

Iα(E ) = inf
µ:µ(E)=1

∫
E

∫
E

dµ(x) dµ(y)

|x − y |n−α

is the α-Riesz energy of E .
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Theorem (Goldman,N.,Ruffini 2015)

Let α < n − 1. For all m,Q positive, the minimum problem

min
E : |E |=m

FQ,α(E )

has no solution (not even local minimizers).

Notice that we require α < n− 1. Indeed, minimizers may exists, if
the charge Q is not too large, when α ≥ n − 1.
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Existence of minimizers

Existence can be proved under additional regularity assumptions.
Given δ > 0, we let Kδ be the class of sets satisfying the δ-ball
condition.

Theorem (Goldman,N.,Ruffini 2015)

There exist 0 < Q0 ≤ Q1 such that the minimum problem

min
E∈Kδ: |E |=m

FQ(E )

has a solution for Q ≤ Q1δ
3/
√
m. Moreover, if Q ≤ Q0δ

3/
√
m,

then the ball is the unique minimizer.

We don’t know if Q0 = Q1, that is, if the ball is the unique
possible minimizer.
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Existence of minimizers

Existence can be also proved under a convexity assumption.

Theorem (Goldman,N.,Ruffini 2016)

The minimum problem

min
E convex, |E |=m

FQ,α(E )

has a solution for all α < n and Q ≥ 0.
Moreover, if α = 0 and n = 2 the minimizers are of class C 1,1.

Here we set

I0(E ) = inf
µ:µ(E)=1

∫
E

∫
E

log

(
1

|x − y |

)
dµ(x) dµ(y).
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Existence of minimizers

A alternative regularization, leading to existence of minimizers for
small charges, consists in requiring that the measure µ is
absolutely continuous w.r.t. the Lebesgue measure, that is,
µ = ρdx , and adding to the energy an extra term proportional to∫

E
ρ2 dx .

Such a term is related to the dielectric response of the fluid
(Muratov, N. 2016).
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Flat droplets

When the droplet is very flat, and the charge is proportionally
small, we can study the behavior of the functional FQ in dimension
n = 2. In this case, existence can be proved for sufficiently small
charges.

Theorem (Muratov,N.,Ruffini 2016)

Let n = 2. For any Q > 0, the ball of radius Q/2 is the unique
(unconstrained) minimizer of FQ .
For Q ≤ 2

√
m/π the ball is the unique minimizer of the problem

min
E : |E |=m

FQ(E ).

For Q > 2
√
m/π there are no minimizers.

Notice that, in this case, we have a complete characterization of
minimizers.
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