

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations VII Partial differential equations, optimal design and numerics Björn Baran, Peter Benner, Jan Heiland, Jens Saak August 28, 2017

Given a coupled nonlinear system:

$$\begin{split} \dot{\mathbf{x}} &= \mathcal{F}_{\mathbf{x}}(\mathbf{x},\mathbf{w},\mathbf{u}),\\ \dot{\mathbf{w}} &= \mathcal{F}_{\mathbf{w}}(\mathbf{x},\mathbf{w},\mathbf{u}), \end{split}$$

together with a reference solution $(\tilde{x},\tilde{w},\tilde{u})$ obtained with an open loop control.

Goal: Stabilization of (x̃, w̃, ũ) by Riccati feedback.
 Motivation: The open loop control ũ is not robust against perturbations and uncertainties.
 Strategy: Linearization around (x̃, w̃, ũ) leads to linear system (M, A, B, C).

Linear Quadratic Regulator Approach

Minimize

CSC

subject to

$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty ||\mathbf{y} - \mathbf{y}_\mathbf{d}||^2 + \lambda ||\mathbf{u}||^2 \, \mathrm{dt}$$
$$\mathcal{M}\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Linear Quadratic Regulator Approach

Minimize
$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty ||\mathbf{y} - \mathbf{y}_\mathbf{d}||^2 + \lambda ||\mathbf{u}||^2 \, \mathrm{dt}$$

subject to
$$\mathcal{M}\frac{d}{dt} \mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Riccati Based Feedback Approach

CSC

e.g., [LOCATELLI '01]

• Feedback: $\mathcal{K} = \mathcal{B}^{\mathsf{T}} \mathbf{X} \mathcal{M}$,

where X is the solution of the generalized algebraic Riccati equation

$$\mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\mathbf{X}\mathcal{M} + \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{A} - \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\mathbf{X}\mathcal{M} = 0.$$

• Optimal control: $\mathbf{u}(t) = -\mathcal{K}\mathbf{x}(t)$.

Linear Quadratic Regulator Approach

Minimize
$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty ||\mathbf{y} - \mathbf{y}_\mathbf{d}||^2 + \lambda ||\mathbf{u}||^2 \, \mathrm{dt}$$

subject to
$$\mathcal{M}\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Riccati Based Feedback Approach

CSC

e.g., [LOCATELLI '01]

• Feedback: $\mathcal{K} = \mathcal{B}^{\mathsf{T}} \mathbf{X} \mathcal{M}$,

where X is the solution of the generalized algebraic Riccati equation

$$\mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\mathbf{X}\mathcal{M} + \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{A} - \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\mathbf{X}\mathcal{M} = 0.$$

• Optimal control: $\mathbf{u}(t) = -\mathcal{K}\mathbf{x}(t)$.

$$\mathcal{M}\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Convection-Diffusion Models: Concentration / Heat Equation

$$\partial_t \vartheta + \mathbf{v} \cdot \nabla \vartheta - \alpha \Delta \vartheta = \mathbf{0},$$

 $\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} - \eta \Delta \mathbf{v} + \nabla \mathbf{p} = \mathbf{0},$
 $\nabla \cdot \mathbf{v} = \mathbf{0}.$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 4/16

Linear Quadratic Regulator Approach Application Examples

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 4/16

$$\mathcal{M}\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Phase Change Model: Stefan Problem $\partial_t T + v \cdot \nabla T - \alpha \Delta T = 0,$ on $\Omega_s \cup \Omega_l,$ $[k_s(\nabla T)_s - k_l(\nabla T)_l] = L \cdot V_{int},$ on $\Gamma_{int},$ $\partial_t v + (v \cdot \nabla)v - \eta \Delta v + \nabla p = 0,$ on $\Omega_l,$ $\nabla \cdot v = 0,$ on Ω_l $p \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} v = \mathbf{u} \cdot \mathbf{n},$ on $\Gamma_{in}.$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 5/16

Phase Change Model: Stefan Problem

$\partial_t T + \mathbf{v} \cdot \nabla T - \alpha \Delta T = 0,$	on $\Omega_s \cup \Omega_l$,
$[k_s(\nabla T)_s - k_l(\nabla T)_l] = L \cdot V_{\text{int}},$	on $\Gamma_{int},$
$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} - \eta \Delta \mathbf{v} + \nabla \mathbf{p} = 0,$	on Ω_I ,
$ abla \cdot \mathbf{v} = 0,$	on Ω_l
$\boldsymbol{p}\cdot\boldsymbol{n}-\eta\partial_{\boldsymbol{n}}\boldsymbol{v}=\boldsymbol{u}\cdot\boldsymbol{n},$	on Γ _{in} .

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 5/16

Difficulties

discontinuity of the temperature gradient along the interface
 is resolve interface with mesh edges, mesh movement

linearization of the system

 \downarrow use reference trajectory

Mesh Movement via Harmonic Extension

$$\begin{split} \Delta V_{\text{mesh}} &= 0, & \text{on } \Omega_s \cup \Omega_l, \\ V_{\text{mesh}} - V_{\text{int}} \cdot \boldsymbol{n}_{\text{int}} &= 0, & \text{on } \Gamma_{\text{int}}. \end{split}$$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 6/16

Stefan Problem with Mesh Movement

 δ

$$\partial_t T + (\mathbf{v} - V_{\text{mesh}}) \cdot \nabla T - \alpha \Delta T = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$[k_s(\nabla T)_s - k_l(\nabla T)_l] = L \cdot V_{\text{int}}, \qquad \text{on } \Gamma_{\text{int}},$$

$$\Delta V_{\text{mesh}} = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$V_{\text{mesh}} - V_{\text{int}} \cdot \mathbf{n}_{\text{int}} = 0, \qquad \text{on } \Gamma_{\text{int}},$$

$$t \mathbf{v} + ((\mathbf{v} - V_{\text{mesh}}) \cdot \nabla)\mathbf{v} - \eta \Delta \mathbf{v} + \nabla p = 0, \qquad \text{on } \Omega_l,$$

$$\nabla \cdot \mathbf{v} = 0, \qquad \text{on } \Omega_l,$$

$$p \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} \mathbf{v} = \mathbf{u} \cdot \mathbf{n}, \qquad \text{on } \Gamma_{\text{in}}.$$

Stefan Problem with Mesh Movement

 \hat{o}

$$\partial_t T + (\mathbf{v} - V_{\text{mesh}}) \cdot \nabla T - \alpha \Delta T = 0, \quad \text{on } \Omega_s \cup \Omega_l,$$

$$[k_s(\nabla T)_s - k_l(\nabla T)_l] = L \cdot V_{\text{int}}, \quad \text{on } \Gamma_{\text{int}},$$

$$\Delta V_{\text{mesh}} = 0, \quad \text{on } \Omega_s \cup \Omega_l,$$

$$V_{\text{mesh}} - \overline{V_{\text{int}}} \cdot \mathbf{n}_{\text{int}} = 0, \quad \text{on } \Gamma_{\text{int}},$$

$$t \mathbf{v} + ((\mathbf{v} - V_{\text{mesh}}) \cdot \nabla) \mathbf{v} - \eta \Delta \mathbf{v} + \nabla p = 0, \quad \text{on } \Omega_l,$$

$$\nabla \cdot \mathbf{v} = 0, \quad \text{on } \Omega_l,$$

$$p \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} \mathbf{v} = \mathbf{u} \cdot \mathbf{n}, \quad \text{on } \Gamma_{\text{in}}.$$

Stefan Problem with Mesh Movement

$$\partial_t T + (v - V_{\text{mesh}}) \cdot \nabla T - \alpha \Delta T = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$[k_s (\nabla T)_s - k_l (\nabla T)_l] = L \cdot V_{\text{int}}, \qquad \text{on } \Gamma_{\text{int}},$$

$$\Delta V_{\text{mesh}} = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$V_{\text{mesh}} - \left(\frac{1}{L}[k_s (\nabla T)_s - k_l (\nabla T)_l]\right) \cdot \mathbf{n}_{\text{int}} = 0, \qquad \text{on } \Gamma_{\text{int}},$$

$$\partial_t v + ((v - V_{\text{mesh}}) \cdot \nabla)v - \eta \Delta v + \nabla p = 0, \qquad \text{on } \Omega_l,$$

$$\nabla \cdot v = 0, \qquad \text{on } \Omega_l,$$

$$p \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} v = \mathbf{u} \cdot \mathbf{n}, \qquad \text{on } \Gamma_{\text{in}}.$$

Difficulties

discontinuity of the temperature gradient along the interface
 is resolve interface with mesh edges, mesh movement

- linearization of the system
 - \downarrow use reference trajectory

For linearization use known reference trajectories: $\tilde{\mathcal{T}}$, $\tilde{\mathcal{V}}_{\text{mesh}}$, \tilde{v}

$$\partial_t T + \underbrace{(v - V_{\text{mesh}}) \cdot \nabla T}_{\text{mesh}} - \alpha \Delta T = 0, \quad \text{on } \Omega_s \cup \Omega_l,$$

$$\Delta V_{\text{mesh}} = 0, \quad \text{on } \Omega_s \cup \Omega_l,$$

$$V_{\text{mesh}} - \left(\frac{1}{L} [k_s (\nabla T)_s - k_l (\nabla T)_l]\right) \cdot \mathbf{n}_{\text{int}} = 0, \quad \text{on } \Gamma_{\text{int}},$$

$$\partial_t v + ((v - V_{\text{mesh}}) \cdot \nabla) v - \eta \Delta v + \nabla p = 0, \quad \text{on } \Omega_l,$$

$$\nabla \cdot v = 0, \quad \text{on } \Omega_l,$$

$$p \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} v = \mathbf{u} \cdot \mathbf{n}, \quad \text{on } \Gamma_{\text{in}}.$$

For linearization use known reference trajectories: $\tilde{\mathcal{T}}$, $\tilde{\mathcal{V}}_{\text{mesh}}$, \tilde{v}

$$\partial_t T + (\mathbf{v} - V_{\text{mesh}}) \cdot \nabla \tilde{T} - \alpha \Delta T = \mathbf{0}, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$\Delta V_{\text{mesh}} = \mathbf{0}, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$V_{\text{mesh}} - \left(\frac{1}{L}[k_s(\nabla T)_s - k_l(\nabla T)_l]\right) \cdot \mathbf{n}_{\text{int}} = \mathbf{0}, \qquad \text{on } \Gamma_{\text{int}},$$

$$\partial_t \mathbf{v} + ((\mathbf{v} - V_{\text{mesh}}) \cdot \nabla) \mathbf{v} - \eta \Delta \mathbf{v} + \nabla \mathbf{p} = \mathbf{0}, \qquad \text{on } \Omega_l,$$

$$\nabla \cdot \mathbf{v} = \mathbf{0}, \qquad \text{on } \Omega_l,$$

$$\mathbf{p} \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} \mathbf{v} = \mathbf{u} \cdot \mathbf{n}, \qquad \text{on } \Gamma_{\text{in}}.$$

For linearization use known reference trajectories: $\tilde{\mathcal{T}}$, $\tilde{\mathcal{V}}_{\text{mesh}}$, \tilde{v}

$$\partial_t T + (\mathbf{v} - V_{\text{mesh}}) \cdot \nabla \tilde{T} - \alpha \Delta T = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$\Delta V_{\text{mesh}} = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$V_{\text{mesh}} - \left(\frac{1}{L}[k_s(\nabla T)_s - k_l(\nabla T)_l]\right) \cdot \mathbf{n}_{\text{int}} = 0, \qquad \text{on } \Gamma_{\text{int}},$$

$$\partial_t \mathbf{v} + \overline{[(\mathbf{v} - V_{\text{mesh}}) \cdot \nabla)\mathbf{v}]} - \eta \Delta \mathbf{v} + \nabla \mathbf{p} = 0, \qquad \text{on } \Omega_l,$$

$$\nabla \cdot \mathbf{v} = 0, \qquad \text{on } \Omega_l,$$

$$\mathbf{p} \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} \mathbf{v} = \mathbf{u} \cdot \mathbf{n}, \qquad \text{on } \Gamma_{\text{in}}.$$

For linearization use known reference trajectories: $\tilde{\mathcal{T}}$, $\tilde{\mathcal{V}}_{\text{mesh}}$, \tilde{v}

$$\partial_t T + (\mathbf{v} - V_{\text{mesh}}) \cdot \nabla \tilde{T} - \alpha \Delta T = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$\Delta V_{\text{mesh}} = 0, \qquad \text{on } \Omega_s \cup \Omega_l,$$

$$V_{\text{mesh}} - \left(\frac{1}{L}[k_s(\nabla T)_s - k_l(\nabla T)_l]\right) \cdot \mathbf{n}_{\text{int}} = 0, \qquad \text{on } \Gamma_{\text{int}},$$

$$\partial_t \mathbf{v} + ((\tilde{\mathbf{v}} - \tilde{V}_{\text{mesh}}) \cdot \nabla) \mathbf{v} - \eta \Delta \mathbf{v} + \nabla \mathbf{p} = 0, \qquad \text{on } \Omega_l,$$

$$\nabla \cdot \mathbf{v} = 0, \qquad \text{on } \Omega_l,$$

$$\mathbf{p} \cdot \mathbf{n} - \eta \partial_{\mathbf{n}} \mathbf{v} = \mathbf{u} \cdot \mathbf{n}, \qquad \text{on } \Gamma_{\text{in}}.$$

🐟 ጩ The Riccati Equations

Autonomous Case

$$\mathcal{M}\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Algebraic Riccati equation:

$$\mathbf{0} = \mathcal{C}^{\mathsf{T}} \mathcal{C} + \mathcal{A}^{\mathsf{T}} \mathbf{X} \mathcal{M} + \mathcal{M}^{\mathsf{T}} \mathbf{X} \mathcal{A} - \mathcal{M}^{\mathsf{T}} \mathbf{X} \mathcal{B} \mathcal{B}^{\mathsf{T}} \mathbf{X} \mathcal{M}$$

🐟 ጩ The Riccati Equations

Autonomous Case

$$\mathcal{M}\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Algebraic Riccati equation:

$$\boldsymbol{0} = \mathcal{C}^\mathsf{T} \mathcal{C} + \mathcal{A}^\mathsf{T} \boldsymbol{X} \mathcal{M} + \mathcal{M}^\mathsf{T} \boldsymbol{X} \mathcal{A} - \mathcal{M}^\mathsf{T} \boldsymbol{X} \mathcal{B} \mathcal{B}^\mathsf{T} \boldsymbol{X} \mathcal{M}$$

Non-autonomous Case

$$\mathcal{M}(t)\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}(t)\mathbf{x}(t) + \mathcal{B}(t)\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}(t)\mathbf{x}(t).$$

autonomous Differential Riccati equation (DRE):

$$-\mathcal{M}^{\mathsf{T}}\dot{\mathbf{X}}\mathcal{M} = \mathcal{C}^{\mathsf{T}}\mathcal{C} + \qquad \mathcal{A}^{\mathsf{T}}\mathbf{X}\mathcal{M} + \mathcal{M}^{\mathsf{T}}\mathbf{X} \qquad \mathcal{A}^{\mathsf{T}} - \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\mathbf{X}\mathcal{M}.$$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 8/16

🐟 ጩ The Riccati Equations

Autonomous Case

$$\mathcal{M}\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}\mathbf{x}(t) + \mathcal{B}\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}\mathbf{x}(t).$$

Algebraic Riccati equation:

$$\boldsymbol{0} = \mathcal{C}^{\mathsf{T}} \mathcal{C} + \mathcal{A}^{\mathsf{T}} \boldsymbol{X} \mathcal{M} + \mathcal{M}^{\mathsf{T}} \boldsymbol{X} \mathcal{A} - \mathcal{M}^{\mathsf{T}} \boldsymbol{X} \mathcal{B} \mathcal{B}^{\mathsf{T}} \boldsymbol{X} \mathcal{M}$$

Non-autonomous Case

$$\mathcal{M}(t)\frac{d}{dt}\mathbf{x}(t) = \mathcal{A}(t)\mathbf{x}(t) + \mathcal{B}(t)\mathbf{u}(t),$$
$$\mathbf{y}(t) = \mathcal{C}(t)\mathbf{x}(t).$$

Non-autonomous Differential Riccati equation (DRE):

$$-\mathcal{M}^{\mathsf{T}}\dot{\mathbf{X}}\mathcal{M} = \mathcal{C}^{\mathsf{T}}\mathcal{C} + (\dot{\mathcal{M}} + \mathcal{A})^{\mathsf{T}}\mathbf{X}\mathcal{M} + \mathcal{M}^{\mathsf{T}}\mathbf{X}(\dot{\mathcal{M}} + \mathcal{A}) - \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\mathbf{X}\mathcal{M}.$$

🐟 🚥 The Riccati Equations

An autonomous generalized DRE

 $-\mathcal{M}^{\mathsf{T}}\dot{\boldsymbol{X}}\mathcal{M}=\mathcal{C}^{\mathsf{T}}\mathcal{C}+\mathcal{A}^{\mathsf{T}}\boldsymbol{X}\mathcal{M}+\mathcal{M}^{\mathsf{T}}\boldsymbol{X}\mathcal{A}-\mathcal{M}^{\mathsf{T}}\boldsymbol{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\boldsymbol{X}\mathcal{M}$

can be solved with, e.g.,

- BDF and Rosenbrock methods,
- splitting methods,
- peer methods.

[Mena, 2007], [Lang et al., 2015] [Stillfjord, 2015] [Lang, 2017]

🐟 🚥 The Riccati Equations

An autonomous generalized DRE

 $-\mathcal{M}^{\mathsf{T}}\dot{\boldsymbol{X}}\mathcal{M}=\mathcal{C}^{\mathsf{T}}\mathcal{C}+\mathcal{A}^{\mathsf{T}}\boldsymbol{X}\mathcal{M}+\mathcal{M}^{\mathsf{T}}\boldsymbol{X}\mathcal{A}-\mathcal{M}^{\mathsf{T}}\boldsymbol{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\boldsymbol{X}\mathcal{M}$

can be solved with, e.g.,

- BDF and Rosenbrock methods,
- splitting methods,
- peer methods.

[Mena, 2007], [Lang et al., 2015] [Stillfjord, 2015] [Lang, 2017]

🐟 💿 The Riccati Equations

An autonomous generalized DRE

 $-\mathcal{M}^{\mathsf{T}}\dot{\boldsymbol{X}}\mathcal{M}=\mathcal{C}^{\mathsf{T}}\mathcal{C}+\mathcal{A}^{\mathsf{T}}\boldsymbol{X}\mathcal{M}+\mathcal{M}^{\mathsf{T}}\boldsymbol{X}\mathcal{A}-\mathcal{M}^{\mathsf{T}}\boldsymbol{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\boldsymbol{X}\mathcal{M}$

can be solved with, e.g.,

BDF and Rosenbrock methods, [Mena, 2007], [Lang et al., 2015]
 splitting methods, [Stillfjord, 2015]
 peer methods. [Lang, 2017]

For non-autonomous generalized DREs

 $-\mathcal{M}^{\mathsf{T}}\dot{\mathbf{X}}\mathcal{M} = \mathcal{C}^{\mathsf{T}}\mathcal{C} + (\dot{\mathcal{M}} + \mathcal{A})^{\mathsf{T}}\mathbf{X}\mathcal{M} + \mathcal{M}^{\mathsf{T}}\mathbf{X}(\dot{\mathcal{M}} + \mathcal{A}) - \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\mathbf{X}\mathcal{M},$

the methods above lead to large requirements of memory and computational time.

Some States States

Autonomous DRE:
$$-\dot{\mathbf{X}} = \mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\mathbf{X} + \mathbf{X}\mathcal{A} - \mathbf{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\mathbf{X}.$$

Theorem[ANDERSON, MOORE, LINEAR OPTIMAL CONTROL '71]Let $(\mathcal{A}, \mathcal{B})$ be stabilizable, $(\mathcal{C}, \mathcal{A})$ be observable, and $\mathbf{X}(0) > 0$. $\tilde{\mathbf{X}} > 0$ is the solution of $\mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\tilde{\mathbf{X}} + \tilde{\mathbf{X}}\mathcal{A} - \tilde{\mathbf{X}}\mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}} = 0.$ For $\tilde{\mathcal{A}} = \mathcal{A} - \mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}}$, $\mathbf{P} > 0$ is the solution of $-\mathcal{B}\mathcal{B}^{\mathsf{T}} + \tilde{\mathcal{A}}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\tilde{\mathcal{A}} = 0.$

The DRE has the unique solution

$$\mathbf{X}(t) = \mathbf{ ilde{X}} + e^{t \widetilde{\mathcal{A}}^{\mathsf{T}}} \left(e^{t \widetilde{\mathcal{A}}} \mathbf{P} e^{t \widetilde{\mathcal{A}}^{\mathsf{T}}} + (\mathbf{X}(0) - \mathbf{ ilde{X}})^{-1} - \mathbf{P}
ight)^{-1} e^{t \widetilde{\mathcal{A}}}$$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 10/16

Solution Cosc Time Invariant Subspace

$$\begin{aligned} \mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\tilde{\mathbf{X}} + \tilde{\mathbf{X}}\mathcal{A} - \tilde{\mathbf{X}}\mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}} &= 0, \\ \mathcal{\tilde{A}} = \mathcal{A} - \mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}}, \qquad -\mathcal{B}\mathcal{B}^{\mathsf{T}} + \mathcal{\tilde{A}}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\mathcal{\tilde{A}} &= 0. \end{aligned}$$

$$\mathbf{X}(t) = \tilde{\mathbf{X}} + e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} \left(e^{t\tilde{\mathcal{A}}} \mathbf{P} e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} + (\mathbf{X}(0) - \tilde{\mathbf{X}})^{-1} - \mathbf{P} \right)^{-1} e^{t\tilde{\mathcal{A}}}$$

Solution Cosc Time Invariant Subspace

$$\mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\tilde{\mathbf{X}} + \tilde{\mathbf{X}}\mathcal{A} - \tilde{\mathbf{X}}\mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}} = 0, \tilde{\mathcal{A}} = \mathcal{A} - \mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}}, \qquad -\mathcal{B}\mathcal{B}^{\mathsf{T}} + \tilde{\mathcal{A}}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\tilde{\mathcal{A}} = 0.$$

$$\begin{split} \mathbf{X}(t) &= \tilde{\mathbf{X}} + e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} \left(e^{t\tilde{\mathcal{A}}} \mathbf{P} e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} + (\mathbf{X}(0) - \tilde{\mathbf{X}})^{-1} - \mathbf{P} \right)^{-1} e^{t\tilde{\mathcal{A}}} \\ &\downarrow \\ \text{not time dependent} \end{split}$$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 11/16

∞ csc Time Invariant Subspace

$$\begin{aligned} \mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\tilde{\mathbf{X}} + \tilde{\mathbf{X}}\mathcal{A} - \tilde{\mathbf{X}}\mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}} &= 0, \\ \mathcal{\tilde{A}} = \mathcal{A} - \mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}}, \qquad -\mathcal{B}\mathcal{B}^{\mathsf{T}} + \mathcal{\tilde{A}}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\mathcal{\tilde{A}} &= 0. \end{aligned}$$

$$\begin{array}{c} \rightarrow 0, \text{for } t \rightarrow \infty \\ \uparrow \\ \mathbf{X}(t) = \tilde{\mathbf{X}} + e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} \left(e^{t\tilde{\mathcal{A}}} \mathbf{P} e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} + (\mathbf{X}(0) - \tilde{\mathbf{X}})^{-1} - \mathbf{P} \right)^{-1} e^{t\tilde{\mathcal{A}}} \\ \downarrow \\ \text{not time dependent} \end{array}$$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 11/16

Solution: Time Invariant Subspace

$$\mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}\tilde{\mathbf{X}} + \tilde{\mathbf{X}}\mathcal{A} - \tilde{\mathbf{X}}\mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}} = 0, \tilde{\mathcal{A}} = \mathcal{A} - \mathcal{B}\mathcal{B}^{\mathsf{T}}\tilde{\mathbf{X}}, \qquad -\mathcal{B}\mathcal{B}^{\mathsf{T}} + \tilde{\mathcal{A}}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\tilde{\mathcal{A}} = 0.$$

$$\begin{array}{c} \rightarrow 0, \text{ for } t \rightarrow \infty \\ \uparrow \\ \mathbf{X}(t) = \tilde{\mathbf{X}} + e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} \left(e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} \mathbf{P} e^{t\tilde{\mathcal{A}}^{\mathsf{T}}} + (\mathbf{X}(0) - \tilde{\mathbf{X}})^{-1} - \mathbf{P} \right)^{-1} e^{t\tilde{\mathcal{A}}} \\ \downarrow \\ \text{not time dependent} \end{array}$$

approximate with, e.g., extended Krylov subspace $\mathcal{K}_{2k-1}(\mathcal{A}^{\mathsf{T}}, (\mathcal{A}^{\mathsf{T}})^{-k+1}\mathcal{C}^{\mathsf{T}})$ $= \operatorname{range}([(\mathcal{A}^{\mathsf{T}})^{-k+1}\mathcal{C}^{\mathsf{T}}, \dots, \mathcal{C}^{\mathsf{T}}, \mathcal{A}^{\mathsf{T}}\mathcal{C}^{\mathsf{T}}, \dots, (\mathcal{A}^{\mathsf{T}})^{k-1}\mathcal{C}^{\mathsf{T}}])$

ľ

So Time Invariant Subspace

Let V_r be an orthonormal basis of $\mathcal{K}_{2k-1}(\mathcal{A}^{\mathsf{T}}, (\mathcal{A}^{\mathsf{T}})^{-k+1}\mathcal{C}^{\mathsf{T}})$.

$$\mathcal{A}_r := V_r^{\mathsf{T}} \mathcal{A} V_r, \quad \mathcal{B}_r := V_r^{\mathsf{T}} \mathcal{B}, \quad \mathcal{C}_r := \mathcal{C} V_r.$$

Projected DRE:

$$\begin{split} -\dot{\mathbf{X}}_{r} &= \mathcal{C}_{r}^{\mathsf{T}} \mathcal{C}_{r} + \mathcal{A}_{r}^{\mathsf{T}} \mathbf{X}_{r} + \mathbf{X}_{r} \mathcal{A}_{r} - \mathbf{X}_{r} \mathcal{B}_{r} \mathcal{B}_{r}^{\mathsf{T}} \mathbf{X}_{r}, \\ \mathbf{X} &\approx V_{r} \mathbf{X}_{r} V_{r}^{\mathsf{T}}. \end{split}$$

So Time Invariant Subspace

Let V_r be an orthonormal basis of $\mathcal{K}_{2k-1}(\mathcal{A}^{\mathsf{T}}, (\mathcal{A}^{\mathsf{T}})^{-k+1}\mathcal{C}^{\mathsf{T}})$.

$$\mathcal{A}_r := V_r^{\mathsf{T}} \mathcal{A} V_r, \quad \mathcal{B}_r := V_r^{\mathsf{T}} \mathcal{B}, \quad \mathcal{C}_r := \mathcal{C} V_r.$$

Projected DRE:

$$\begin{split} -\dot{\mathbf{X}}_{r} &= \mathcal{C}_{r}^{\mathsf{T}} \mathcal{C}_{r} + \mathcal{A}_{r}^{\mathsf{T}} \mathbf{X}_{r} + \mathbf{X}_{r} \mathcal{A}_{r} - \mathbf{X}_{r} \mathcal{B}_{r} \mathcal{B}_{r}^{\mathsf{T}} \mathbf{X}_{r}, \\ \mathbf{X} &\approx V_{r} \mathbf{X}_{r} V_{r}^{\mathsf{T}}. \end{split}$$

Can this approach be extended to non-autonomous DREs?

Presented

- Numerical solution of the Stefan Problem with mesh movement and finite elements.
- Steering of the interface position with open loop control and computation of reference trajectories.
- Linearization of the Stefan Problem around a given working trajectory.
- Extension of the linear-quadratic regulator approach for convection-diffusion(-reaction) and Navier-Stokes models to Stefan problems.

Presented

- Numerical solution of the Stefan Problem with mesh movement and finite elements.
- Steering of the interface position with open loop control and computation of reference trajectories.
- Linearization of the Stefan Problem around a given working trajectory.
- Extension of the linear-quadratic regulator approach for convection-diffusion(-reaction) and Navier-Stokes models to Stefan problems.

Observations

- The Stefan problem results in a complicated Riccati equation.
- It has a differential-algebraic structure and is non-autonomous.

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 13/16

- The goal is to apply the linear-quadratic regulator approach for the Stefan problem.
- The first step is a simplified model without Navier–Stokes equations.
- The existing solvers for solving the Riccati equation (like BDF, Rosenbrock method, and Newton-ADI) can be adjusted to the problem.
- Further investigation of projection-based approach.

• The goal is to apply the linear-quadratic regulator approach for the Stefan problem.

Thank you!

- The first step is a sim
- The existing solvers for Rosenbrock method, a problem.

Navier–Stokes equations. quation (like BDF, be adjusted to the

Further investigation of projection-based approach.

L	_		
L	2		
L	_		
L	2		
L			

Baran, B. (2016).

Optimal Control of a Stefan Problem with Gradient-Based Methods in FEniCS. Master's thesis, Otto-von-Guericke-Universität, Magdeburg, Germany.

Lang, N. (2017).

Numerical Methods for Large-Scale Linear Time-Varying Control Systems and related Differential Matrix Equations.

Dissertation, Technische Universität Chemnitz.

Lang, N., Mena, H., and Saak, J. (2015).

On the benefits of the \textit{LDL}^{T} factorization for large-scale differential matrix equation solvers.

Linear Algebra Appl., 480:44–71.

Locatelli, A. (2001).

Optimal Control: An Introduction. Birkhäuser, Basel, Switzerland.

Mena, H. (2007).

Numerical Solution of Differential Riccati Equations Arising in Optimal Control of Partial Differential Equations.

PhD thesis, Escuela Politécnica Nacional, Quito, Ecuador.

Saak, J. (2009).

Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction.

Dissertation, Technische Universität Chemnitz.

Sontag, E. D. (1998). Mathematical Control Theory. Springer-Verlag, New York, NY, 2nd edition.

Stillfjord, T. (2015).

Low-rank second-order splitting of large-scale differential Riccati equations. *IEEE Trans. Automat. Control*, 60(10):2791–2796.

Weichelt, H. K. (2016). Numerical Aspects of Flow Stabilization by Riccati Feedback. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany.

🐟 ጩ Open Loop Control

Cost Functional and Desired Interface Position for Open Loop Control

$$\mathcal{J}(\mathbf{x},\mathbf{u}) := ||f(E) - f_d(E)||^2 + \frac{\lambda}{2} \int_0^E ||\mathbf{u}(t)||^2 dt.$$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 17/16

4

🐟 💿 Riccati Equation

🐟 💿 Riccati Equation

$$-\mathcal{M}^{\mathsf{T}}\dot{\mathbf{X}}\mathcal{M} = \mathcal{C}^{\mathsf{T}}\mathcal{C} + (\dot{\mathcal{M}} + \mathcal{A})^{\mathsf{T}}\mathbf{X}\mathcal{M} + \mathcal{M}^{\mathsf{T}}\mathbf{X}(\dot{\mathcal{M}} + \mathcal{A}) - \mathcal{M}^{\mathsf{T}}\mathbf{X}\mathcal{B}\mathcal{B}^{\mathsf{T}}\mathbf{X}\mathcal{M}.$$

Björn Baran: baran@mpi-magdeburg.mpg.de Feedback Control, Moving Interfaces, and Non-Autonomous Riccati Equations 19/16