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Some relevant results (no friction)

J.-M. Coron, B. d’Andréa-Novel & G. Bastin (2007) constructed a strict

H2
-Lyapunov function for the boundary control of hyperbolic systems of

conservation laws without source term.

In (2008), they constructed a strict H2
-Lyapunov for quasilinear

hyperbolic systems with dissipative boundary conditions without source

term.

More recently in (2015), Coron and Bastin study the Lyapunov stability

of the C 1
-norm for quasilinear hyperbolic systems of the first order. They

consider W 1
p –Lyapunov functions for p < 1 and look at the limit for

p ! 1.

J.M. Cordo, S.Ervedoza, S.S. Ghoshal, O. Glass and V. Perrollaz:
Dissipative boundary conditions for 2X2 hyperbolic systems of
conservation laws for entropy solutions in BV. J. Di↵erential Equations
262 (2017), no. 1, 1–30.
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Selection of own contributions

Gugat, Martin; Leugering, Günter; Wang, Ke; Neumann boundary

feedback stabilization for a nonlinear wave equation: A strict

H2
-Lyapunov function. Math. Control Relat. Fields 7 (2017), no. 3,

419–448.

This lecture:
..........

Controllability and finite time stabilizability (without Friction)

G.L. and E.J.P.G. Schmidt: On the modelling and stabilization of flows in
networks of open canals. SIAM J. Control Optim. 41 (2002), no. 1,
164–180.

For Systems with source term (Friction):

M. Dick, M. Gugat & G. L. (2010) considered the isothermal Euler
equations with friction with Dirichlet boundary feedback at both ends of
the system and introduced a strict H1-Lyapunov function.

In (2012), we have defined a strict H2-Lyapunov function for this
stabilization problem for Dirichlet boundary feedbacks
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The Euler gas equation

Let a finite time T > 0 be given. The system dynamics for the gas flow

in a single pipe can be modeled by a hyperbolic system, which is

described by the isothermal Euler equations:
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where ⇢ = ⇢(t, x) > 0 is the density of the gas, q = q(t, x) is the mass

flux, the constant f

g

> 0 is a friction factor, � > 0 is the diameter of the

pipe and a > 0 is the sonic velocity in the gas. We consider the equations

on the domain ⌦ := [0,T ]⇥ [0, L].
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The corresponding wave equation

We use the notation

✓ =

f
g

�

and consider positive gas flow in subsonic or subcritical states, that is,

0 <
q

⇢
< a.

The isothermal Euler equations give rise to the second-order equation
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x

, ũ
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where ũ is the unknown function and satisfies ũ =

q

⇢ , that is ũ is the

velocity of the gas. The lower order term is
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Density recovery
From the velocity ũ, the density ⇢ can be obtained from the initial value

⇢(0, ·) and the di↵erential equation

(ln ⇢)
t

=

1

a2

✓
ũ ũ

t

+ (ũ2 � a2) ũ
x

+

1

2

✓ |ũ| ũ2
◆
.

Then q can be obtained from the equation q = ⇢ ũ.
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Stabilization around steady states

To stabilize the system governed by the quasilinear wave equation (??)
locally around a given stationary state ū(x), we use the boundary

feedback law

ũ

x

(t, 0) = ū

x

(0) + k ũ

t

(t, 0),

ũ(t, L) = ū(L),

with a feedback parameter k 2 (0,1).

In terms of the physical variables (q, ⇢), the boundary feedback law is

at x = 0 : q

x

� (ln(⇢))
x

q = ⇢ ū
x

(0) + k [q

t

� (ln(⇢))
t

q] ,

at x = L : q = ū(L) ⇢.
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Analysis of the 2X2 system

@
t

✓
⇢
q

◆
+

ˆA(⇢, q) @
x

✓
⇢
q

◆
=

ˆG (⇢, q)

with the matrix

ˆA(⇢, q) :=

 
0 1

a2 � q

2

⇢2 2

q

⇢

!

and the source term

ˆG (⇢, q) :=

 
0

� ✓
2
|q| q
⇢

!
.

The system has two eigenvalues

˜��(⇢, q), ˜�+(⇢, q) and in the subsonic

case we have

˜��(⇢, q) =
q

⇢
� a < 0 < ˜�+(⇢, q) =

q

⇢
+ a.
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Riemann invariants
and in the subsonic case we have

˜��(⇢, q) =
q

⇢
� a < 0 < ˜�+(⇢, q) =

q

⇢
+ a.

In terms of the Riemann invariants R± = R±(⇢, q) = � q

⇢ ⌥ a ln(⇢) our
system has the diagonal form

@
t

✓
R+

R�

◆
+

ˆD(R+,R�) @x

✓
R+

R�

◆
=

ˆS(R+,R�),

where

ˆD(R+,R�) :=

✓
˜�+ 0

0

˜��

◆
=

 
�R++R�

2 + a 0

0 �R++R�
2 � a

!
,
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Riemann invariants

ˆ

S(R+,R�) := �✓

8

(R+ + R�) |R+ + R�|
✓

1

1

◆
.

In terms of R±, for the physical variables ⇢ and q we have

⇢ = exp

✓
R� � R+

2a

◆
,

q = �R+ + R�
2

exp

✓
R� � R+

2a

◆
.

A gas flow is positive and subsonic (i.e. 0 < q/⇢ < a) if and only if

�2a < R+(t, x) + R�(t, x) < 0 for all (t, x) 2 ⌦.
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Riemann invariants... and back
For the velocity ũ = ũ(⇢, q) we have

ũ =

R+ + R�
�2

, ũ =

˜�+ +

˜��
2

.

The second-order quasilinear equation is hyperbolic with the eigenvalues

˜�� = ũ � a < 0 < ˜�+ = ũ + a.

Using the isothermal Euler equations, we obtain the partial derivatives of

ũ with respect to t and x , respectively,

ũ
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⇢
t

⇢
+ (ũ
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Second order system

ũ
x

=

q
x

⇢
� q⇢

x

⇢2
= �⇢

t

⇢
� ũ

⇢
x

⇢
.

Multiplying ũ
t

and ũ
x

by ũ and ũ2 � a2, respectively, and adding the two

equations we obtain that ⇢ and q can be obtained from ũ and the initial

data. Note that since ũ =

q

⇢ , we have the same value for ũ for �q and �⇢

where � 2 (0, 1]. So we cannot expect to recover the values of (q, ⇢)
from ũ without additional information on (q, ⇢). We obtain the equation

ln(⇢)
x

= � 1

a2

✓
ũ
t

+ ũ ũ
x

+

✓

2

|ũ| ũ
◆
.

Thus if ũ is known, the values of ⇢ can be determined from the value of ⇢.
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Stationary states
Now we consider the question: Given a constant state ū = � 2 (0, 1), is

there a solution (q, ⇢) of the quasilinear system that corresponds to the

constant velocity ū? For � = 0 we obtain the constant solution of where

q = 0. For � > 0 there is a corresponding solution of travelling wave type

(in particular the corresponding solution of is not stationary), namely

(q(t, x), ⇢(t, x)) = (�↵(� t � x), ↵(�t � x))

where the function ↵ is given by

↵(z) = C exp

✓
�2✓

2 a

2
z

◆

and C > 0 is a positive constant. This can be rewritten in the form

d

dx

✓
(a

2 � ū

2
(x))ū

x

(x)� ✓

2

|ū(x)| ū2(x)
◆

= 0.
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Stationary states
Thus all the stationary solutions must satisfy the equation

ū

0
(0) =

✓

2

|ū0| ū20
a

2 � ū

2
0

.

Lemma:
Let a subsonic stationary state ū(x) > 0 for x 2 [0, L] that is not
constant and satisfies the condition above be given. Let W�1(x) denote

the real branch of the Lambert W–function with W�1(x)  �1. Then

the following equation holds for all x 2 [0, L]:

(ū(x))

2
=

a

2

�W�1(� exp(✓ x +

¯

C ))

,

where

¯

C is a real constant such that

¯

C  �1� ✓L.
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Deviation from equlibrium
Now we consider non-stationary solutions locally around a subsonic

stationary state ū(x) > 0 on ⌦

u(t, x) = ũ(t, x)� ū(x).

Then we obtain the equation

u

tt

+ 2 (ū + u) u

tx

�
⇣
a

2 � (ū + u)

2
⌘
u

xx

= F (x , u, u
x

, u
t

), (1)
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x

, u
t
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x

, u
t

) +

a

2 � (ū + u)
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2
ū
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+ ū
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Semi-global classical solutions
Lemma
Let a subsonic stationary state ū(x) > 0 be given. Choose T > 0

arbitrarily large. There exist constants "0(T ) > 0 and CT > 0, such that

if the initial data ('(x), (x)) 2 C

2
([0, L])⇥ C

1
([0, L]) satisfies

max

�
k'(x)kC 2([0,L]), k (x)kC 1([0,L])

 
 "0(T )

and the C

2
-compatibility conditions are satisfied at the points

(t, x) = (0, 0) and (0, L), then the initial-boundary problem (1)-(4) has a

unique solution u(t, x) 2 C

2
([0,T ]⇥ [0, L]). Moreover the following a

priori estimate holds:

kukC 2([0,T ]⇥[0,L])  CT max

�
k'(x)kC 2([0,L]), k (x)kC 1([0,L])

 
.

t = 0 : u = '(x), u

t

=  (x), x 2 [0, L] (2)

x = 0 : u

x

= k u

t

, (3)

x = L : u = 0, (4)
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Liapunov functions
In the sequel we consider

E1(t) =

Z
L

0
h1(x)

⇣
(a2�(ū+u)2) u2

x

+u2
t

⌘
�2 h2(x)

⇣
(ū+u)u2

x

+u
t

u
x

⌘
dx

since according to the previous considerations, this is a natural candidate

to define a Lyapunov function for our system.

To show the exponential decay with respect to the H2
-norm, it is

necessary to deal with the second order derivatives. Therefore we also

introduce E2(t) which is defined analogously to E1 to show the decay of

the partial derivatives of second order. We define

E2(t) =

Z
L

0
h1(x)

⇣
(a2�(ū+u)2)u2

xx

+u2
tx

⌘
�2 h2(x)

⇣
(ū+u)u2

xx

+u
tx

u
xx

⌘
dx .
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The perturbed system

We define the Lyapunov function E (t) as

E (t) = E1(t) + E2(t). (5)

We show that E (t) as defined in is bounded above and below by the

product of appropriate constants and the square of the H2
-norm of u.

Consider the system

8
>><

>>:

ũ

tt

+ 2 ũ ũ

tx

� (a

2 � ũ

2
) ũ

xx

=

˜

F (ũ, ũ
x

, ũ
t

),
ũ

x

(t, 0) = ū

x

(0) + k ũ

t

(t, 0), t 2 [0,T ],
ũ(t, L) = ū(L), t 2 [0,T ],
t = 0 : ũ = '(x) + ū(x), ũ

t

=  (x), x 2 [0, L]

(6)
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Exponential stability
Theorem: (Exponential Decay of the H2

-Lyapunov Function). Let

a real number � 2 (0, 1
2 ] be given. Choose a real number k > 0 such that

a (1� �) k > 1.

Let a stationary subsonic state ū(x) 2 C 2
(0, L) be given that satisfies

ū0(0) =
✓

2

|ū0| ū20
a2 � ū20

.

Assume that for all x 2 L we have ū(x) 2 (0, � a) . Assume that for

K@(k , ū0) as given by

K@(k , ū0) = 2

"
4

k2
+

2 ū0
k

+ ✓
ū40 + 3a2ū20 +

2
k a

2ū0

2(a2 � ū20)
+

5

2

✓

k2
+

✓

k

3a2ū0 � ū30
a2 � ū20

#2

.

we have
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Continued...

2 k

2
K@(k , ū(0))  a

2 �
✓
ū(0) +

2

k

◆2

.

Assume that kūkC 2([0,L]) is su�ciently small such that

kūkC([0,L]) < "1(2 k2
) holds.

Let T > 0 be given. If the initial data satisfies

k('(x), (x))kC 2([0,L])⇥C 1([0,L])  "0(T )

and the C

2
-compatibility conditions at the points (t, x) = (0, 0) and

(t, x) = (0, L).
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....continued.
Then the initial-boundary value problem (6) for ũ has a unique classical

solution ũ 2 C 2
([0,T ]⇥ [0, L]). Define the number

µ =

1

2 e L k
�  � 1

4 eLk
.

Then we have

E1(t)  E1(0) exp (�µ t) for all t 2 [0,T ],

E (t)  E (0) exp (�µ t) for all t 2 [0,T ]

that is E1(t) and E (t) are strict Lyapunov functions for our control

system (6).
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hyperbolic systems. Birkhäuser,Basel, Switzerland, 2016.

J. M. Coron and G. Bastin, Dissipative Boundary Conditions for
One-Dimensional Quasi-linear Hyperbolic Systems: Lyapunov Stability for
the C 1-Norm,
SIAM J. Control Optim. 53 (2015), 1464-1483.

J. M. Coron, B. d’Andréa-Novel and G. Bastin,
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