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Setting up the problem

The fluid-structure interaction problems appear naturally in
aerodynamics, aeroacoustics and biology. They are of two types of
fluid-structure interaction:

• A solid is immersed in a fluid : movement of fish or a submarine in
a river or ocean, flow around an aircraft or formula 1 car.

• A fluid is contained in a domain and all or part of the boundary is
deformable (blood flow in an artery or the respiratory movement
mechanism)



Fluid Structure Interaction
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• Ω = (0, L)× (0, 1)  The domain in the reference configuration.

• Γs = (0, L)× {1}  The elastic part of the fluid boundary in the
reference configuration.

• For t > 0 and x ∈ (0, L), η(t, x) denotes the vertical displacement
of the elastic structure.

• The domain occupied by the fluid at time t > 0 is

ΩF (t) =
{

(x , y) | x ∈ (0, L), 0 < y < 1 + η(t, x)
}
.

• ΓS(t) =
{

(x , y) | x ∈ (0, L), y = 1 + η(t, x)
}
.



Model Problem:

• Fluid equation : written in unknown moving domain ΩF (t).
=⇒ Navier-Stokes equations

ρf (∂tu + (u.∇)u)− div σ(u, p) = 0, div u = 0

σ(u, p) = ν(∇u +∇uT )− pI

• Structure equation : written in reference configuration

ρs∂ttη + α∂4
xη − β∂2

xη − γ∂2
x∂tη = −

√
1 + (∂xη)2σ(u, p)ñ · n

• Coupling condition : The fluid sticks to the boundary of the
structure and consequently the fluid velocity and the structure
velocity are equal at the interface.

u(t, x , 1 + η(t, x)) = ∂tη(t, x)e2 for t > 0, x ∈ (0, L).



Boundary and Initial conditions

Fluid Boundary Conditions :

• Enclosed Cavity : u = 0 on ∂Ω \ ΓS(t).

• Inflow and Outflow Boundary conditions :

σ(u, p)n = −pin\outn on Γin\out

• Periodic boundary conditions.

Structure Boundary Conditions :

• Clamped \Periodic

Initial Conditions :

(η(0), ∂tη(0)) = (η0
1 , η

0
2) in Γs ,

u(0) = u0 in ΩF (0).



State of the Art

ρs∂ttη + α∂4
xη − β∂2

xη − γ∂2
x∂tη = · · ·

• Existence of at least one weak solution

• 3D/2D coupling with damped plate (α, γ > 0) - Chambolle,
Desjardins, Esteban, Grandmont, 05

• 3D/2D coupling with plate (α > 0, γ = 0) - Grandmont, 09 .
Also true for 2D/1D coupling if α = γ = 0 and β > 0.

• 2D/1D coupling with α > 0 and γ > 0 - Muha, Canić, 13

• Existence of unique strong solution

• 2D/1D coupling with α > 0, γ > 0 - local in time existence for
small data - Beirao Da Veiga, 04

• 2D/1D or 3D/2D coupling α > 0, γ > 0 - local in time
existence for any initial data - Julien Lequeurre, 11 and 13

• 2D/1D coupling with α > 0, γ > 0 - global in time strong
solution - Grandmond and Hillairet, 16



State of the Art

• Local Stabilization - Damped Plate equation

• Control acts everywhere on the structure equation - J.-P.
Raymond, 10

• Boundary Control - Ndiaye, Matignon and Raymond - 14
• Boundary control for weak solutions - Badra and Takahashi -

17



Controlled System
The controlled system that we consider is

ρf (ut + (u.∇)u)− ν∆u +∇p = 0, div u = 0 in (0,∞)× ΩF (t),

u(t, x , 1 + η(t, x)) = ∂tη(t, x)e2 for t > 0, x ∈ (0, L)

u = Luc on Σb
∞, u(0) = u0 in Ωη(0),

ρs∂ttη −∆sη + (−∆s)
1
2 ∂tη = H(u, p, η) (1.1)

(η(0), ηt(0)) = (η0
1 , η

0
2) in Γs ,

u(·, t), p(·, t), and η(·, t) are L-periodic with respect to x ,

where

H(u, p, η) = p|ΓS (t) − ν(∇u +∇uT )|ΓS (t)(−ηxe1 + e2) · e2.

The operator L localizes the action of the control uc in a relatively
compact subset of Γb and such that∫

Γb

Luc · n = 0.



Goal

• We choose a control finite dimension of the form

uc(t, x) =
Nc∑
i=1

gi (t)wi (x),

where (wi (x))16i6Nc is chosen suitably and and the control variable
is g = (g1, g2, · · · gNc ).

• To determine a control g in feedback form, able to stabilize, with
any exponential decay rate −ω < 0, the system (1.1) in some
appropriate space locally around (u, p, η) = (0, 0, 0).



Some Remarks

• The incompressibility condition together with boundary conditions
imply: ∫ L

0

∂tη = 0.

• For simplicity we assume

η(t, ·) ∈ L2
#,0(ΓS) =

{
f ∈ L2

#(ΓS) |
∫ L

0

f = 0

}
.

• Consequently, for any regular solution (u, p, η), we have∫
Γs

H(u, p, η) = 0.

• We introduce the orthogonal projection Ms ∈ L(L2
#(Γs), L2

#,0(Γs)),
and rewrite the structure equation as

ρs∂ttη −∆sη + (−∆s)
1
2 ∂tη = Ms(H(u, p, η)).



Method

• Rewrite the system in the reference configuration.

•

X (t, ·) : Ω 7−→ ΩF (t)

(x , z) 7−→ (x , y) = (x , (1 + η(t, x))z) .

• Linearize the fluid structure interaction system.

• Find a feedback control stabilizes the linearized system.

• Stabilization of nonlinear system in reference configuration.

• Come back to the original configuration.



System in the reference configuration:

We set

û(t, x , z) = u(t,X (t, x , z)), p̂(t, x , z) = p(t,X (t, x , y)).

ρf (∂t û + (û.∇)û)− ν∆û +∇p̂ = F̂ (û, p̂, η), in (0,∞)× ΩF (0)

div û = Ĝ (û, η) in (0,∞)× ΩF (0),

û = ∂tη(t, x)e2 on (0,∞)× ΓS ,

û =

Nc∑
i=1

gi (t)Lwi (x) on (0,∞)× Γb, (1.2)

ρSηtt − β∆sη + (−∆s)
1
2 ηt = Ms(p̂ − 2νû2,z + Ĥ(û, η)) on (0,∞)× Γs ,

+ initial conditions



Nonlinear Terms

F̂ (û, p̂, η) = −ηût +

(
zηt + νz

(
η2
x

1 + η
− ηxx

))
ûz

+ν

(
−2zηx ûxz + ηûxx +

(
z2η2

x − η
1 + η

)
ûzz

)
+z(ηx p̂z − ηp̂x)e1 − (1 + η)û1ûx + (zηx û1 − û2)ûz ,

Ĝ (û, η) = −ηû1,x + zηx û1,z = div ξ̂ with ξ̂ = −ηû1e1 + zηx û1e2,

and

Ĥ(û, η) = ν

(
ηx

1 + η
û1,z + ηx û2,x −

η2
x − 2η

1 + η
û2,z

)
.



Linearized Model

Set η1 = η and η2 = ∂tη. The system linearized around (0, 0, 0, 0), is

ρf ∂tv − ν∆v +∇p = 0, div v = 0 in (0,∞)× ΩF (0),

v = η2e2 on Σs
∞, v = uc on Σb

∞,

v(0) = v0 in Ω,

η1,t = η2 on Σs
∞,

ρsη2,t − β∆sη1 + (−∆s)
1
2 η2 = γs(p − 2νv2,z) on Σs

∞, (1.3)

η1(0) = η0
1 , η2(0) = η0

2 in Γs .

• γsp = Msp|Γs .

• v1 = 0 on Γs and div v = 0 implies v2,z = 0 on ΓS .



Damped Wave Equation
We consider

η1,t = η2 in (0,∞)× (0, L),

ρsη2,t − β∆sη1 + (−∆s)
1
2 η2 = h in (0,∞)× (0, L),

• AS generates an analytic semigroup on H1
# × L2

# with

D(AS) = H2
# × H1

#.

• For h ∈ L2(L2
#) and regular initial conditions we have η2 ∈ L2(H1

#)

ρf ∂tv − ν∆v +∇p = 0, div v = 0 in (0,∞)× ΩF (0),

v = η2e2 on Σs
∞, v = uc on Σb

∞,

• Consequently v ∈ L2(H
3/2
# ) and p ∈ L2(H

1/2
# ).

• Qn : How to define p|Γs ?

• In case of damped plate equation η2 ∈ L2(H2
#) and p ∈ L2(H1

#)



Stabilizability of Abstract Linear control
System

We consider the following system

d

dt
z(t) = Az(t) + Bu(t), z(0) = z0.

• A : D(A) ⊂ H 7→ H generates a C 0 semigroup and B ∈ L(U,H).

• A generates an analytic semigroup and has compact resolvent.

• (A,B) is stabilazable if and only if

ker(λI − A∗) ∩ kerB∗ = {0} for all Reλ > 0.

• There exists K ∈ L(H,U) such that (A + BK ) is stable.



Rewriting as an evolution equation

L2
#(Ω) = V0

#,n(Ω)⊕∇H1
#(Ω),

where

V0
#,n(Ω) =

{
y ∈ L2

#(Ω) | div y = 0, y.n = 0 on Γb ∪ Γs

}
and

∇H1
#(Ω) =

{
∇f | f ∈ H1

#(Ω)
}
.

The orthogonal projection in L2
#(Ω) onto V0

#,n is denoted by P. The fluid
equation can be written as

Pv′ = A0Pv + (−A0)PDsη2 + (−A0)PDbuc , , v(0) = v0

(I − P)v(t) = (I − P)Dsη2(t) + (I − P)Dbuc .

• A0 = P∆, D(A0) = {H2 ∩ V 0
n | v = 0 on Γb ∪ ΓS}.

• The above system is well posed in D(A∗0)′.



The pressure term

Taking divergence and normal trace of the fluid equation we obtain

∆p = 0 in Ω,

∂p

∂n
= ν∆v · n − ρf (1ΓS

∂tη2)− 1Γb
∂tuc · nb

Thus p = N(ν∆Pv · n)− ρfNs(∂tη2)− Nb(∂tuc · nb).

The structure equation becomes

η1,t = η2

(ρs + ρf γsNs)η2,t − β∆sη1 + (−∆s)
1
2 η2 = γsN(ν∆Pv · n)− γsNb(∂tuc · nb)

• The “added mass” operator Ks = (ρs + ρf γsNs) is an
automorphism on L2

#,0.



Evolution equation

d

dt

Pv
η1

η2

 = AFS

Pv
η1

η2

+ B1g + B2gt ,

(I − P)v = (I − P)Dsη2 +
Nc∑
i=1

gi (I − P)Dbwi ,

AFS =

 A0 0 (−A0)PDs

0 0 I

K−1
s γsN(ν∆(·) · n) K−1

s β∆s −K−1
s (−∆s)

1
2

 .

B1g =


Nc∑
i=1

gi (−A0)PDbLwi

0
0

 B2gt =


0
0

−
Nc∑
i=1

gi,tK
−1
s γsNb(Lwi · n)

 .



We equip the space

Z = V0
#,n(Ω)×H1

#(Γs)× L2
#,0(Γs), (1.4)

We now consider the unbounded operator (A,D(A;Z)) in Z with

D(A;Z) =
{

(Pv, η1, η2) ∈ V0
#,n ×H2

#(Γs)×H1
#(Γs)

| A0(Pv − PDsη2) ∈ V0
#,n(Ω)

}
.

• Qn: How to make sense of the term γsN(ν∆(Pv) · n) ? Pv 6∈ H2.

• Perturbation argument and transposition method.



Rewrite AFS in the form AFS = A1 + B̃, with

A1 =

A0 0 (−A0)PDs

0 0 I

0 K−1
s β∆s −K−1

s (−∆s)
1
2


and

B̃ =

 0 0 0
0 0 0

K−1
s γsN(∆(·) · n) 0 0


• The operator (A1,D(A;Z)) is the infinitesimal generator of an

analytic semigroup on Z, and the resolvent of A1 is compact in Z.
We show

‖λ(λI −A1)−1‖L(Z) 6 C .

• To show γsN(ν∆(Pv) · n) ∈ L2
#,0(ΓS) for all (Pv, η1, η2) ∈ D(A1).

• For all ε > 0, there exists Cε > 0, such that

‖γsN(∆v · n)‖L2
#,0(Γs ) ≤ ε‖A1(Pv, η1, η2)‖Z + Cε‖Pv, η1, η2)‖Z



Rewrite AFS in the form AFS = A1 + B̃, with

A1 =

A0 0 (−A0)PDs

0 0 I

0 K−1
s β∆s −K−1

s (−∆s)
1
2


and

B̃ =

 0 0 0
0 0 0

K−1
s γsN(∆(·) · n) 0 0


• The operator (A1,D(A;Z)) is the infinitesimal generator of an

analytic semigroup on Z, and the resolvent of A1 is compact in Z.
We show

‖λ(λI −A1)−1‖L(Z) 6 C .

• To show γsN(ν∆(Pv) · n) ∈ L2
#,0(ΓS) for all (Pv, η1, η2) ∈ D(A1).

• For all ε > 0, there exists Cε > 0, such that

‖γsN(∆v · n)‖L2
#,0(Γs ) ≤ ε‖A1(Pv, η1, η2)‖Z + Cε‖Pv, η1, η2)‖Z



(Pv, η1, η2) ∈ D(A1), iff (v, η1, η2)

λv − divσ(v, q) = f , div v = 0 in Ω,

v = η2e2 on ΓS , v = 0 on Γb

λη1 − η2 = g in Γs

λη2 −∆sη1 + (−∆s)
1
2 η2 = h in Γs ,

for some λ > 0 and f ∈ V 0
#,n(Ω), g ∈ H1(ΓS) and h ∈ L2(ΓS).

• q|Γ = (σ(v, q)n · n)|Γ ∈ L2
#,0(ΓS).

• ∆v · n = ∂q
∂n where

−∆q = 0 in Ω, q|Γ ∈ L2(Γ).

• ∂q

∂n
∈ H−1(Γ), by transposition method.

• Hence, γsN(∆v · n) ∈ L2
#,0(Γs).

Theorem

The operator (A,D(A;Z)) is the infinitesimal generator of an analytic
semigroup on Z, and the resolvent of A is compact.



Extended System

• Time derivative of the control variable g appears. We want to
obtain an evolution equation without the time derivative of the
control variable.

• We choose g as a new state variable and by introducing
f = gt − Λg as a new control variable, where Λ is a diagonal matrix
that we choose later on.

• The extended system:

d

dt


Pv
η1

η2

g

 = Ae


Pv
η1

η2

g

+ Bef, (1.5)

(Ae ,D(Ae ;Ze)) is the unbounded operator on Ze = Z× RNc

defined by

Ae =

(
AFS B1 + B2Λ

0 Λ

)
,



The operator Be ∈ L(RNc ,Ze) is defined by

Bef =


0
0

−
Nc∑
i=1

fiK
−1
s γsNb(wi · n)

f

 .

• The operator (Ae ,D(Ae ;Ze)) is the infinitesimal generator of an
analytic semigroup on Ze , and its resolvent is compact.

• The spectrum of A, is a discrete spectrum, the eignevalues are
isolated and of finite multiplicity.

• For simplicity let us assume that there is only one unstable
eigenvalue which is real, say λ.



Choice of Λ and (w)i

Let us assume (v, η1, η2, g) ∈ Ker(λI −A∗e ) ∩KerB∗e .

(λI −AFS)(v, η1, η2)T = 0,

(λI − Λ)g = −
(∫

Γb

σ(v, p)n · Lwi

)
16i6Nc(

gi −
∫

Γb

Ns(η2)n · Lwi

)
= 0.

• λ 6∈ σ(A) =⇒ (v, p, η1, η2, g) = 0.

• σ(A) ∩ σ(Λ) = {0}. Λ = diag(α1, α2).

•
∫

Γb
[(λ− α1)(Nsη2)n + σ(v, p)n] · Lw1 = 0

• Unique continuation results (Fabre-Lebeau, Trigianni)



Closed Loop Non homogeneous System

vt − ν∆v +∇p = F , div v = G = div ξ in Q∞,

v = η2e2 on Σs
∞, v =

Nc∑
i=1

gi (t)wi (x) on Σb
∞,

v(0) = v0 in Ω,

η1,t = η2 on Σs
∞,

η2,t − β∆sη1 + (−∆s)
1
2 η2 = γs(p − 2νv2,z) + H on Σs

∞,

η1(0) = η0
1 , η2(0) = η0

2 in Γs ,

gt − Λg = K(v(·, t), η1(·, t), η2(·, t), g)T , g(0) = 0.

We define

Ydiv =
{
ξ ∈ L2

#(Q∞)|div ξ ∈ L2(0,∞;H1
#(Ω)), ξt ∈ L2

#(Q∞),

〈ξ(·, t) · n, 1〉
H

−1/2
# (Γ),H

−1/2
# (Γ)

= 0
}
.



Theorem

Let (v0, η0
1 , η

0
2) ∈ H1

#(Ω) ∩ V0
#(Ω)×H2

#(Γs)×H1
#(Γs) + Compatibility

condition. Let eωtF ∈ L2(0,∞;L2
#(Ω)), eωtξ ∈ Ydiv , and

eωtH ∈ L2(0,∞;H1/2
# (Γs)). Then above system has a unique solution

eωtv ∈ L2(0,∞;H2) ∩ H1(0,∞; L2)

eωtp ∈ L2(0,∞;H1
#(Ω))

eωtη1 ∈ L2(0,∞;H5/2
# (Γs)) ∩ H2(0,∞;H1/2

# (Γs)),

eωtη2 ∈ L2(0,∞;H3/2
# (Γs)) ∩ H1(0,∞;H1/2

# (Γs)),

eωtg ∈ H1(0,∞;RNc ).



Nonlinear closed loop system in the
deformed configuration

ρf ∂tu + (u.∇)u− divσ(u, p) = 0,div u = 0 in (0,∞)× ΩF (t)

u(x , 1 + η(x , t), t) = ηt(x , t)e2 for (x , t) ∈ (0, L)× (0,∞)

u =
Nc∑
i=1

gi (t)wi (x) on Σb
∞, u(0) = u0 in Ωη(0),

ρs∂ttη − β∆sη + (−∆s)
1
2 ∂tη = p + H(u, η) on Σs

∞,

(η(0), ηt(0)) = (η0
1 , η

0
2) in Γs ,

gt − Λg + ωg = K(u ◦ X−1, η1, η2, g)T , g(0) = 0.



Stabilization result:

Theorem

For all ω > 0, there exists 0 < µ0 < 1 a for all µ ∈ (0, µ0) and all initial
data (u0, η

0
1 , η

0
2) ∈ H1

#(ΩF (0))×H2
#(Γs)×H1

#(Γs), satisfying

div u0 = 0 in ΩF (0), u0(x , 1 + η0
1(x)) = η0

2(x)e2 for x ∈ (0, L)

1 + η0(x) > 0and u0 = 0 on Γb.

and
‖u0‖H1

#(ΩF (0)) + ‖η0
1‖H2

#(Γs ) + ‖η0
2‖H1

#(Γs ) 6 µ,

there exists a control g = (g1, g2, · · · , gNc ) ∈ H1
0 (0,∞;RNc ), such that

the solution to (1.1) satisfies

‖eωtu(t, ·) ◦ X−1‖H1
#(Ω) + ‖eωtη(t, ·)‖H2

#(Γs ) + ‖eωt∂tη(t, ·)‖H1
#(Γs ) . µ.

Moreover, 1 + η > 0 for all t ∈ [0,∞), x ∈ (0, L).



Future Direction of Work

• 3D/3D coupling

Ω

ΓS

ΓS(t)

ΩF (t)0 L

X

• Koiter shell equation on ΓS .

• Existence of weak solutions - Lengeler et.al, Buka? et. al,
Muha-Canić, .....

• (with A. Roy and J.-P Raymond in preparation) : Local in time
strong solution with inflow/outflow boundary conditions.

• Stabilization results....

• Existence of strong solution without damping.



Thank you.
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