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Controlled wave equation

Given any T > 0 and initial data(
u0, u1

)
∈ H := L2(0, 1)×H−1(0, 1), the exact controllability in time

T of the linear wave equation with a potential,
u′′(t, x)− uxx(t, x) + a(x)u(t, x) = 0 (t, x) ∈ (0, T )× (0, 1)
u(t, 0) = 0 t ∈ (0, T )
u(t, 1) = v(t) t ∈ (0, T )
u(0, x) = u0(x), u′(0, x) = u1(x) x ∈ (0, 1)

(1)
where a is a real potential function, consists of finding a scalar
function v ∈ L2(0, T ), called control, such that the corresponding
solution (u, u′) of (1) verifies

u(T, x) = u′(T, x) = 0 (x ∈ (0, 1)). (2)

It is know that, if T ≥ 2 this property holds.



Variational result

The function v ∈ L2(0, T ) is a control which drives to zero the
solution of (1) in time T if and only if, the following relation holds∫ T

0

v(t)ϕx(t, 1)dt = 〈u1, ϕ(0, ·)〉H−1,H1
0
−
∫ 1

0

u0(x)ϕt(0, x)dx (3)

for every

(
ϕ0

ϕ1

)
∈ H1

0 (0, 1)× L2(0, 1), where(
ϕ
ϕt

)
∈ H1

0 (0, 1)× L2(0, T ) is the solution of the following adjoint

backward problem
ϕtt(t, x)− ϕxx(t, x) + a(x)ϕ(t, x) = 0 t > 0, x ∈ (0, 1)
ϕ(t, 0) = ϕ(t, 1) = 0 t > 0
ϕ(T, x) = ϕ0(x) x ∈ (0, 1)
ϕt(T, x) = ϕ1(x) x ∈ (0, 1).

(4)



Spectral analysis

By denoting W =

(
ϕ
ϕt

)
, equation (4) is equivalent with

 Wt +AW = 0

W (T ) = W 0 =

(
ϕ0

ϕ1

)
,

(5)

where A =

(
0 −1
L 0

)
, Lu = −uxx + au.

Eigenvalues of L are (νn)n∈N∗ and the corresponding eigenfunctions
are (ϕn)n∈N∗ .
If a ≡ 0 ⇒ νn = n2π2 and ϕn = sin(nπx).
Eigenvalues of A: (iλn)n∈Z∗ , λn = sgn(n)

√
ν|n|, ‖νn − n2π2‖ ≤ ‖a‖L∞ .

Eigenfunctions of A form an orthogonal basis in H1
0 (0, 1)× L2(0, 1):

Φn =
sgn(n)√

2λn

(
1
−iλn

)
ϕ|n|. (6)



Moment problem for the wave equation

The null-controllability of the wave equation is equivalent to solve the
following moment problem:

For any (u0, u1) =
∑
n∈Z∗ a

0
ni sgn(n)λnΦn, find v ∈ L2(0, T ) such that∫ T

2

−T
2

v

(
t+

T

2

)
e−iλntdt =

√
2λne

−iT2 λn

(ϕ|n|)x(1)
(n ∈ Z∗). (7)

A solution v of the moment problem may be constructed by means of
a biorthogonal sequence to the family (eiλnt)n∈Z∗ .



Biorthogonal sequence

Definition

A family of functions (θm)m∈Z∗ ⊂ L2
(
−T2 ,

T
2

)
with the property∫ T

2

−T
2

θm(t)e−iλntdt = δmn (m, n ∈ Z∗), (8)

is called a biorthogonal sequence to (eiλnt)n in L2
(
−T2 ,

T
2

)
.

Once we have a biorthogonal sequence to (eiλn t)n∈Z∗ , a ”formal”
solution of the moment problem is given by

v(t) =
√

2
∑
n∈Z∗

eiλn
T
2

(ϕ|n|)x(1)
a0nθn

(
t− T

2

)
(t ∈ (0, T )). (9)



Main problems

the existence of a biorthogonal sequence (θm)m to the family
(eiλnt)n in L2

(
−T2 ,

T
2

)
evaluation of the norm of (θm)m

This estimates are needed to show the convergence of the series in (9)
and to have a bound of the norm of v.



A constructive way to obtain a biorthgonal sequence

(Ψm)m∈Z∗ entire functions.

H1 . |Ψm(z)| ≤ Ae
T
2
|z|,

H2 . Ψm ∈ L2(R),

H3 . Ψm

(
iλn

)
= δmn.

Paley–Wiener Theorem (1934)

θm ∈ L2

(
−T

2
,
T

2

)
such that Ψm(z) =

∫ T
2

−T
2

θm(t)e−izt dt.

Plancherel’s Theorem (1910)∫ T
2

−T
2

|θm(t)|2 dt =
1

2π

∫
R
|Ψm(x)|2 dx.



Finite differences for the wave equation

Let N ∈ N∗, h = 1
N+1 , xj = jh, 0 ≤ j ≤ N + 1, aj = a(xj)


u′′j (t)− uj+1(t)−2uj(t)+uj−1(t)

h2 + ajuj(t) = 0 1 ≤ j ≤ N, t > 0
u0(t) = 0 t ∈ (0, T )
uN+1(t) = vh(t) t ∈ (0, T )
uj(0) = u0j , u′j(0) = u1j 1 ≤ j ≤ N.

(10)
Discrete controllability problem: given T > 0 and

(U0
h , U

1
h) = (u0j , u

1
j )1≤j≤N ∈ C2N , there exists a control function

vh ∈ L2(0, T ) such that the solution (uj)1≤j≤N of (10) satisfies

uj(T ) = u′j(T ) = 0, ∀j = 1, 2, .., N. (11)

uj(t) ≈ u(t, xj) if (U0
h , U

1
h) ≈ (u0, u1).



Non uniformly observability and controllability

Let T > 0. For any h > 0, there exists a constant C = C(T, h) such
that ∥∥∥∥∥

(
ϕj
ϕ′j

)
1≤j≤N

(0)

∥∥∥∥∥
2

1,0

≤ C
∫ T

0

∣∣∣∣ϕN (t)

h

∣∣∣∣2 dt, (12)

for any

(
ϕ0
j

ϕ1
j

)
1≤j≤N

∈ C2N and

(
ϕj
ϕ′j

)
1≤j≤N

solution of the

corresponding backward equation, but there exists a ∈ L∞(0, 1)
(Infante and Zuazua (MMAN, 1999)) such that

lim
h→0

sup
(ϕ, ϕ′) solution

∥∥∥∥( ϕj
ϕ′j

)
(0)

∥∥∥∥2
1,0∫ T

0

∣∣∣ϕN (t)
h

∣∣∣2 dt =∞. (13)

(13) shows that the system (10) is not uniformly controllable. This is
equivalent with the existence of initial data (u0, u1) ∈ H to which
corresponds an unbounded sequence of controls (vh)h>0.



Regularity and filtration of the initial data

If a 6= 0, we prove that we can restore the uniform controllability
property if:

Initial data (u0, u1) are sufficiently smooth and discretized by
points

U0
h = (u0(jh))1≤j≤N , U1

h = (u1(jh))1≤j≤N ;

Initial data (u0, u1) are in the energy space H and the high
frequencies of their discretization are filtered out,

(U0
h , U

1
h) =

∑
1≤|n|≤

√
N

anhΦnh;

These results are similar with the ones obtained in (Micu, Numer.
Math, 2002), but the proof is more difficult since the eigenvalues and
eigenvectors are not explicit.



The matriceal form of the equation

We write (10) as an abstract Cauchy form{
U ′′h (t) +AhUh(t) +DhUh(t) = Bhv(t) t ∈ (0, T )

Uh(0) = U0
h , U ′h(0) = U1

h ,
(14)

Ah = 1
h2



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
...

...
. . .

. . .
. . .

...
...

0 0 . . . −1 2 −1 0
0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 2


,

Dh =


a1 0 . . . 0 0
0 a2 . . . 0 0
...

...
...

. . .
...

0 0 . . . aN−1 0
0 0 . . . 0 aN

 , Bhv(t) = 1
h2


0
...
0

vh(t)

 .



Spectral analysis

If a ≥ 0 and ‖a‖L∞(0,1) ≤ δ the eigenvalues are given by the family
(i λm)1≤|m|≤N , where

λm = ηm + εm,

ηm =
2

h
sin

(
mπh

2

)
0 ≤ εm ≤

δ

|ηm|
. (15)

To obtain the asymptotic relation (15) we apply an argument
based on the smoothing method and the Rouche’s Theorem.{

vn+1 − (2 + η2h2 + anh
2)vn + vn−1 = 0, (n ≥ 1)

v0 = 0, v1 = u1.
(16)

iλm ∈ C is an eigenvalue of Ah ⇔ u1 6= 0 and

vN+1(iλm) = 0. (17)



Localization of the eigenvalues

{
un+1 − (2 + η2h2)un + un−1 = 0, (n ≥ 1)
u0 = 0, u1 ∈ C. (18)

The equation uN+1(η) = 0 has the roots (iηm)1≤|m|≤N given by (15).
If ‖(an)n‖∞ < δ we have that

|uN+1(η)− vN+1(η)| < |uN+1(η)| ∀η ∈ ∂Bi ηm
(

δ

|ηm|

)
(
Bi ηm

(
δ
|ηm|

))
1≤m≤N

are disjoint if δ is small enough.

In the continuous case the localization of eigenvalues can be done
with balls of radius δ

|ηm|2 , which are of order δh2 in the high

frequencies.

But, in the discrete case we can localize the eigenvalues only with
balls of radius δ

|ηm| , which are of order δh in the high frequencies.



A biorthogonal sequence to Λ = (eλnt)1≤|n|≤N

Theorem

There exist T0 > 0 and h0 > 0 such that for any T > T0 and h < h0
there exists a biorthogonal sequence (θm)1≤|m|≤N to the family

(eiλnt)1≤|n|≤N in L2
(
−T2 ,

T
2

)
, such that, for any finite sequence

(am)1≤|m|≤N we have that∥∥∥∥∥∥
∑

1≤|m|≤N

amθm

∥∥∥∥∥∥
L2(−T

2 ,
T
2 )

≤ C
∑

1≤|m|≤N

|am|2e2ωm
2h, (19)

where ω and C are two positive constants independent of m and h.



The construction of a biorthogonal sequence to a family
of exponentials Λ =

(
ei λnt

)
n≥1

in L2(−T/2, T/2)

A Weierstrass product

(P1) Pm(z) =
∏
n 6=m

z − λn

λm − λn

, (P2) |Pm(x)| ≤ C1 exp(ϕ(x)),

ϕ(x) =

{
C |x| ≤ 2

h

C√
h

√
|x| − 2

h
|x| > 2

h

A multiplier

(M1) |Mm(x)| ≤ C2 exp(−ϕ(x)), (M2) |Mm (λm)| ≥ C3 exp(−ωm2h).

The entire function

(E1) Ψm(z) = Pm(z)
Mm(z)

Mm (λm)

sin (ε (z − λm))

ε (z − λm)
.

Th. Paley-Wienner ⇒ (θm)m = (Ψ̂m)m biorthogonal



Uniformly boundedness of the sequence of controls

Theorem

Let T > T0 and h < h0. For any
(
U0
h , U

1
h

)
∈ C2N of the form(

U0
h , U

1
h

)
=

∑
1≤|n|≤N

%na
0
hnΦnh, (20)

with

%n =

 1 if |n| ≤
√
N

0 otherwise
or %n = exp(−2ωhn2), (21)

and (a0hn)1≤|n|≤N uniformly bounded in l2, there exists a control
vh ∈ L2(0, T ) for problem (10) such that the family (vh)h>0 is
uniformly bounded in L2(0, T ).



Uniformly boundedness of the sequence of controls

Theorem

Let T > T0, h < h0 and
(
u0 u1

)
∈ L2(0, 1)×H−1(0, 1) of the form(

u0, u1
)

=
∑
n∈Z∗ a

0
nΦn with the property∑

n∈Z∗
|a0n|2n2e3ωhn

2

< +∞. (22)

Given
(
U0
h , U

1
h

)
∈ C2N of the form(

U0
h , U

1
h

)
=
(
u0(jh), u1(jh)

)
, (23)

there exists a uniformly bounded family of controls (vh)h>0 in L2(0, T )
for problem (14).



Numerical results

Figure: Initial data to be controlled.

u0(x) =

{
3 if 1

3 ≤ x ≤
2
3

0 if x ∈
(
0, 13
)
∪
(
2
3 , 1
)
,

u1(x) = 0 (x ∈ (0, 1)).

N = 100;T = 4.77; a(x) = 1 + sin(3πx)
A conjugate gradient method for the corresponding discrete

optimization approach.



Numerical results

Figure: The first four iterations of the conjugate gradient method for the
approximation of v̂h with N = 100 without filtration.



Numerical results

Figure: The approximation of the control v̂h with N = 100, 200, 500 and
1000 by using filtration of the initial data.



Comments and open problems

We have asked the potential a verifies: there exist α ∈ R and
δ > 0 such that

‖a− α‖L∞(0,1) ≤ δ. (24)

We do not have obtained the optimal control time.

The range of filtration is
√
N . In the case a = 0, (Lissy, Roventa,

2017) shows that range of filtration may be δN .

In (Allonsius, Boyer, Morancey, 2017) it was considered a similar
problem with a non uniform grid. They have proved similar
results for a system of parabolic equations using different
techniques. However, our strategy allow us to obtain a better
localization of the eigenvalues.
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