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Wavelets

A wavelet (due to Morlet and Grossmann in the early 1980s) is a
mathematical function used to divide a given function or
continuous-time signal into different scale components. They used
the French word ondelette, meaning “small wave”. Soon it was
transferred to English by translating “onde” into “wave”, giving
“wavelet”.
The study of wavelets has attained the present growth due to
mathematical analysis of wavelets by Stromberg (Proceedings of
Harmonic Analysis, Univ. of Chicago, pp. 475-494, 1981),
Grossmann and Morlet (SIAM J. Math. Anal., pp. 723-736, vol.
15, 1984) and Meyer (Cambridge University Press, Cambridge,
1989).
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Example
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Left: Initial signal Middle: Fourier approximation with only 17
terms Right: Wavelet approximation with only 17 terms
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Multiresolution Analysis of L2(R)

Definition

MRA is characterized by the following axioms

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R)⋃
j∈Z V

j = L2(R)⋂
j∈Z V

j = {0}

Invariance to dilations, i.e f ∈ V j iff f (2(.)) ∈ V j+1

Invariance to translations, i.e
{φ0k (scaling function) = φ(x − k)|k ∈ Z} is an orthonormal
basis for V0

Now the sequence φjk(x) = 2j/2φ(2jx − k)
k∈Z

is an orthonormal

basis for V j .
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Since φ00(x) = φ(x) ∈ V0 ⊂ V1, so

φ(x) =
∞∑

k=−∞

hkφ
1
k(x).

This is called dialation equation and for Daubechies compactly
supported scaling function only finitely many hk , k = 0, 1, · · ·D − 1
will be nonzero. Where D is even positive integer called the wavelet
genus and h0, h1, · · · , hD−1 are called low pass filter coefficients.
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Define W j = {ψj
k (wavelet) |k ∈ Z} to be the complement of V j

in V j+1, where V j+1 = V j +W j .
Now the sequence ψ(x) ∈ W0 (which is called mother wavelet)
such that ψj

k(x) = 2j/2ψ(2jx − k)
k∈Z

is an orthonormal basis for

W j . For, Daubechies compactly supported wavelet
ψ(x) ∈ W0 ⊂ V1, therefore

ψ(x) =

D−1∑

k=0

gkφ
1
k(x).

This is called wavelet equation and g0, g1, · · · , gD−1 are called high
pass filter coefficients connected by the relation
gk = (−1)khD−1−k , k = 0, 1, · · · ,D − 1.
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Why second generation wavelets?

Second generation wavelet was developed by W. Swelden in
1996.

Fast O(N ) transform.

Dynamic grid adaption to the local irregularities of the
solution.
(This situation arises e.g. in the tracking of storms or fronts
for the simulation of global atmospheric dynamics).
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Why general manifolds?(e.g. Sphere)

Application of adaptive wavelet collocation method (AWCM)
to the problems of geodesy, climatology, meteorology
(Representative examples include forecasting the moisture and
cloud water fields in numerical weather prediction).

Many PDEs arise from mean curvature flow, surface diffusion
flow and Willmore flow on the sphere.
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Why wavelets on manifolds? (e.g. spherical wavelets)

Spherical triangular grids (quasi uniform triangulations) avoid
the pole problem.
Conventional grids–uniform longitude-latitude grid

Problem- Singularity of coordinate system near the poles

Solution-

Necessary to introduce auxiliary coordinate system.
Another solution is to avoid the introduction of the ’metric
term’ which are unbounded near the poles.

To solve PDEs efficiently using adaptivity on general manifold
by wavelet methods was an open problem till 2000.

Past applications of wavelets to turbulence have been mainly
restricted to flat geometries which severely limits for
geophysical applications.
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Wavelet multiresolution analysis of L2(S)

Definition

MRA is characterized by the following axioms

V j ⊂ V j+1 (subspaces are nested).
⋃j=∞

j=−∞
V j = L2(S).

Each V j has a Riesz basis of scaling function {φjk |k ∈ Kj}.

Define W j = {ψj
m(wavelets)|m ∈ Mj} to be the complement of

V j in V j+1, where V j+1 = V j ⊕W j .

φjk =
∑

l∈Kj+1

h
j
k,lφ

j+1
l (dilation equation)

ψj
m =

∑

l∈Kj+1

g
j
m,lφ

j+1
l ,m ∈ Mj (wavelet equation)
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Construction of spherical wavelets based on spherical
triangular grids
The set of all vertices

S j = {pjk ∈ S : pjk = p
j+1
2k |k ∈ Kj} and Mj = Kj+1/Kj .

Level 0

Dyadic icosahedral triangulation of the sphere
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Wavelet compression

uJ(p) =
∑

k∈K0 c
J0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑
m∈Mj d

j
mψ

j
m(p)

Test function Wavelet locations xJk without
compression at J = 6, #K6 = 40962
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Wavelet compression

uJ≥(p) =∑
k∈K0 c

J0
k φ

J0
k (p) +

∑j=J−1
j=J0

(
∑

m∈Mj

|d j
m|≥ǫ

d j
mψ

j
m(p) +

∑
m∈Mj

|d j
m|≤ǫ

d j
mψ

j
m(p))

Test function Wavelet locations xJk without
compression at J = 6, #K6 = 40962
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Wavelet compression

uJ≥(p) =
∑

k∈K0 c
J0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑
m∈Mj

|d j
m|≥ǫ

d j
mψ

j
m(p)+Discarded term

Test function Wavelet locations xJk st J = 6, ǫ = 10−5,

N(ǫ) = 8175 and ratio #K6

N(ǫ) ≈ 5
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Wavelet compression

uJ(p) =
∑

k∈K0 c
J0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑
m∈Mj d

j
mψ

j
m(p)

Test function Wavelet locations xJk without
compression at J = 7,

#K7 = 163842
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Wavelet compression

uJ≥(p) =
∑

k∈K0 c
J0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑
m∈Mj

|d j
m|≥ǫ

d j
mψ

j
m(p)+Discarded term

Test function Wavelet locations xJk at J = 7,
ǫ = 10−5, N(ǫ) = 20353 and ratio

#K7

N(ǫ) ≈ 8
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Wavelet compression

uJ(p) =
∑

k∈K0 c
J0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑
m∈Mj d

j
mψ

j
m(p)

Test function Wavelet locations xJk without
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Wavelet compression

uJ≥(p) =
∑

k∈K0 c
J0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑
m∈Mj

|d j
m|≥ǫ

d j
mψ

j
m(p)+Discarded term

Test function Wavelet locations xJk at J = 8,
ǫ = 10−5, N(ǫ) = 64231 and ratio

#K8

N(ǫ) ≈ 10
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Diffusion wavelet was introduced by R. R. Coifman et al. in
2006 (Ref:, R. R. Coifman and M. Maggioni, Diffusion
Wavelets, Appl. Comput. Harmon. Anal., Vol. 21, 2006).

Given a manifold X and a diffusion operator T on L2(X ) such
that high powers of T have low numerical rank, an MRA can
be constructed for L2(X ) which leads to the construction of
diffusion wavelet.

Classes of operators which can be used for the construction of
diffusion wavelet include approximation of second order
differential operators.

A precision τ > 0 is fixed and X J = {x1, x2, · · · , xN} is the
discretization of X using N points.

ΦJ = {δk}k∈X J , δk is an N × 1 vector having 1 at k th place
and 0 otherwise, then space VJ is defined as:

VJ = span{ΦJ}.
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diffusion wavelet.

Classes of operators which can be used for the construction of
diffusion wavelet include approximation of second order
differential operators.

A precision τ > 0 is fixed and X J = {x1, x2, · · · , xN} is the
discretization of X using N points.
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For the operator T it is clear that

· · · ⊆ range
τ
(T 1+2+···+2j−1) ⊆ · · · ⊆ range

τ
(T ) ⊆ span{ΦJ} ⊆ · · · ⊆ L2(X ),

so that we have

· · · ⊆ VJ−j ⊆ · · · ⊆ VJ−1 ⊆ VJ ⊆ · · · ⊆ L2(X ),

which is analogous to the axiom (1) of MRA.

In the construction of diffusion wavelet the operator T being the
diffusion operator dilates the functions on which it is operated. Now
the functions in V j are obtained by applying the operator T on the
functions of the space V j+1, hence the functions of the space V j are
dilations of the functions in the space V j+1.

Clearly
⋃

j∈Z

V j = L2(X ), which is analogous to axiom (3) of MRA.

Also ΦJ τ -spans the space VJ , which is analogous to axiom (4) of
MRA.
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The detail spaces {W j}s are constructed in such a way that
V j = V j−1 ⊕W j−1.

Construction of the MRA can be visualized with following diagram

........V j+1

W j

V j

(ΦJ is the basis.)

VJ−1 = range
τ
T

(ΦJ−1 is the basis.)

WJ−1 = range
τ
(I − T )

(ΨJ−1 is the basis.)

....

VJ = span{ΦJ}
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Motivation for wavelet methods

Wavelet basis allowed to represent objects with singularities of
complex structures with low number of degrees of freedom, a
property that is particularly promising when thinking of an
application to the numerical solutions of PDEs.

Good approximation properties

Efficient multiscale decompositions

Compact support

Vanishing moments

Existence of fast wavelet transform

Techniques for preconditioning and compression of operators
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The first attempts to use wavelet bases for numerical solution
of PDEs go back to early 1990s.

Despite the vast literature available, the wavelet theory for
numerical solution of PDEs on general manifold is still in
nascent stage.

We have developed adaptive meshfree diffusion wavelet
method for solving PDEs on the sphere and this method can
be easily generalised onto general manifolds.

Ref: M. Mehra, N.K.-R. Kevlahan, An adaptive wavelet
collocation method for the solution of partial differential equations
on the sphere, Journal of Computational Physics, Vol. 227 (11)
2008
Ref: Kavita Goyal, Mani Mehra, An adaptive meshfree diffusion
wavelet method for partial differential equations on the Sphere,
Journal of Computational Physics, Vol. 272 (2014) pp.
747–771.
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Spectral graph wavelet
Numerical results

Spectral graph wavelet constructed in 2011 by Hammond and
others.

The wavelet is constructed on an arbitrary finite weighted graph
G = {V ,E , ω}.

The adjacency matrix A = {am,n} for the weighted graph G has the
entries

am,n =

{
ω(e) if e ∈ E connects vertices m and n

0 otherwise.

For a weighted graph, the degree of each vertex m, written as d(m),
is defined as the sum of weights of all the edges incident to it, i.e.,

d(m) =
∑

n

am,n. A matrix D is defined as a diagonal matrix with

d(m) as the diagonal entries.

A non normalized Laplacian for the graph is defined as L = D − A.
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Numerical results

For any f ∈ R
N defined on the vertices of the graph G , its graph

Fourier transform f̂ is defined by

f̂ (l) = 〈χl , f 〉 =
N∑

n=1

χ∗
l (n)f (n),

where {χl , l = 0, 1, 2, · · · ,N − 1} are the eigenvectors
corresponding to the eigenvalues 0 = λ0 < λ1 ≤ λ2 · · · ≤ λN−1 of
the matrix L (like e iωx used in defining the Fourier transform of the
function defined on R are eigenfunctions of the one–dimensional

Laplacian operator d2

dx2
).

The inverse graph Fourier transform is

f (n) =

N−1∑

l=0

f̂ (l)χl (n).
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Spectral graph wavelet
Numerical results

To define spectral graph wavelet transform, initially a kernel
function g : R+ → R

+ is chosen satisfying g(0) = 0 and
lim

x→∞
g(x) = 0 (we will refer g as wavelet kernel).

Then, for the given wavelet kernel g , the wavelet operator
Tg = g(L) acts on a given function f by modulating each Fourier
mode as

T̂g f (l) = g(λl)f̂ (l),

which implies

(Tg f )(m) =

N−1∑

l=0

g(λl )f̂ (l)χl (m).

The wavelet operator at scale t is then defined by T t
g = g(tL).

The spectral graph wavelets are defined as

ψt
n = T t

gδn.

which implies

ψt
n(m) = T t

gδn(m) =

N−1∑

l=0

g(tλl )χ
∗
l (n)χl (m).
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Numerical results

The wavelet coefficients of a function f are obtained by taking the
inner product of that function with these wavelets, as

Wf (t, n) = 〈ψt
n, f 〉 (Spectral graph wavelet transform (SGWT)).

Spectral graph scaling functions are determined by a single
real valued function h : R+ → R which satisfies h(0) > 0 and
lim
x→∞

h(x) = 0 (we will refer h as scaling function kernel).

φn = h(L)δn.

The scaling function coefficients are given by

Sf (n) = 〈φn, f 〉 (Spectral graph scaling function trans. (SGST))
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Numerical results

The naive way of computing SGST and SGWT requires explicit
computation of entire set of eigenvalues and eigenfunctions of the
Laplacian operator L. This approach is computationally inefficient
for large graphs.

In order to achieve the fast transforms, wavelet kernel g and the

scaling function kernel h are approximated by their Chebyshev

polynomial expansions.

Fast SGST and SGWT.
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d
j
k for different value of j for

f (x) = − tanh
(
x+x0
2ν

)
+ e−642(x−x0)2 , x0 =

1
3 , ν = 10−3, (J = 4).
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f (x) = x , if 0 < x < 0.5 and x − 1 otherwise.
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Functions and the corresponding adaptive node arrangements using
SGW with R = 0.1 and M = 4.
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Turing patterns on the sphere

In 1952, A. M. Turing settled the basis for explaining
biological patterns using two interacting chemicals, which
under certain conditions, can generate stable patterns from an
initial near-homogeneity. This phenomenon has now been
shown to occur in chemistry and biology.

The Turing patterns are governed by a system of nonlinear
reaction-diffusion equations. We solve the following system

∂u

∂t
= Dδ∇2u + αu(1 − r1v

2) + v(1− r2u),

∂u

∂t
= δ∇2v + βv

(
1 +

αr1
β

uv

)
+ u(γ + r2v).

At initial state, i.e., at t = 0 we consider u = v = 0, except
on a narrow band.
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The stable patterns can be either stripes or spots, depending
on the parameters r1 and r2. The parameter r1 favours stripes
while r2 favours spots.

We fix the parameters
D = 0.516, δ = 0.0045, α = 0.899, β = −0.91 and γ = −α.

As case 1, we take r1 = 3.5, r2 = 0.

As case 2, we take r1 = .002, r2 = 0.2.
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Solution (u component) and dynamically adapted node
arrangement for case 1 at t = 0 and t = 18.
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Spectral graph wavelet
Numerical results

Solution (u component) and dynamically adapted node
arrangement for case 1 at t = 50 and t = 1000.
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Solution (u component) and dynamically adapted node
arrangement for case 2 at t = 250 and t = 1000.
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Ref: An adaptive meshfree spectral graph wavelet method for
PDEs (with Kavita Goyal), Applied Numerical Mathematics,
Vol. 113 (2017) pp. 168–185.
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Collaborator

Günter Leugering (FAU Erlangen)

Ankita Shukla (IIT Delhi)
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Mathematical solutions of PDEs on network–like structure
modelling many real life phenomenon (i.e water wave propogation in
open channels) exhibit singularities and these singularities are of
physical relevance.

To discover all the features of the solution we need a large set of
node points but this will increase the computational as well as
storage cost.

In some cases the set required to capture all the features of the
solution may exceed the practical limitations.

To deal with these problems we work on an adaptive node

arrangement which will keep on modifying according to numerical

solution of the PDE on networks evolves with time.
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Adaptive mesh refinement (AMR) is the most typical technique
used for adaptivity. In AMR the entire computational domain is
covered with a coarse Cartesian grid. Individual grid cells are
selected for refinement in moving from one step of the numerical
algorithm to the next step based on a posteriori criterion.

These methods are, no doubt, computationally efficient but the
theory proving their advantages over their corresponding non
adaptive counterparts is not well developed. In particular, the rate
of convergence of the adaptive algorithm, which describes the trade
off between the accuracy and complexity of the approximation is not
clearly understood.

One of the important property of wavelet is that the wavelet

coefficients d j
k decrease rapidly for smooth functions. Moreover, if a

function has a discontinuity in one of its derivatives then the

wavelet coefficients will decrease slowly only near the point of

discontinuity and maintain fast decay where the function is smooth.
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This property of wavelet makes it suitable to detect where in the
numerical solution of a PDEs on large networks the singularities are
located.

The selection of appropriate basis functions in wavelet based
adaptive methods is similar to the selection of the grid cells in
AMR, therefore one could expect similar performances from both
the approaches.

The advantage with wavelet based adaptive methods is that sound

theoretical results exist which can answer the fundamental questions

such as rate of convergence of the adaptive method.
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Topology of network
For our numerical computation, we have taken the following

wavelet kernel

g(λ) =





λ2 for λ < 1
−5 + 11λ− 6λ2 + λ3 1 ≤ λ ≤ 2
4λ−2 for λ > 2.
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The wavelet kernels are plotted in figure against different λ using
t1 = 8.80, t2 = 2.57, t3 = .75 and t4 = .22 for the star shaped
network.
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The wavelet scales tj are selected to be logarithmically equispaced
between the minimum (tJ) and maximum (t1) scales. All the
properties (1, 2 and 3) of g are satisfied as it could be observed
from above figure.
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The wavelet functions for J = 4 at t1 = 8.80, t2 = 2.57, t3 = .75
and t4 = .22. The space localization is apparent from the figure as
tj → 0.
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Standard adaptation technique

X c X J
Interpolation

F
W
T

Scaling and wavelet coefficients Adaptive node arrangement
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Modified adaptation technique

X J0
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Scaling and wavelet coefficients

X J0+1 Stopping criterion
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Y
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Adaptive node arrangement
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There is some sort of similarity in diffusion and spectral graph
wavelet, for example, both require a diffusion operator for their
construction.

The largest difference between the two is that the diffusion wavelet
is designed to be orthonormal whereas the spectral graph wavelet is
not. The orthogonalising technique in the construction of diffusion
wavelet complicates the construction procedure. On the other hand
the approach used for the spectral graph wavelet is much simpler.

Spectral graph wavelet is constructed for defining wavelet transform
for data defined on the vertices of a weighted graph.

Weighted graphs provide a flexible generalisation of regular grid

domains. This particular weighted graph wavelet motivated us to

try spectral graph wavelet method for numerical solution of PDEs

on network-like structure.
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Thank you very much for attention!
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