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Introduction

We present a Finite Element (FE) scheme for the numerical approximation of
the solution to the following non-local equation:

Fractional Poisson equation

(−d2
x )

su = f , x ∈ (−L, L), u ≡ 0, x ∈ R \ (−L, L).

As a natural application, we analyze the numerical control problem for the
following parabolic equation:

Fractional heat equation


zt + (−d2

x )
sz = g1ω, (x , t) ∈ (−1, 1)× (0,T )

z = 0, (x , t) ∈ [R \ (−1, 1) ]× (0,T )

z(x , 0) = z0(x), x ∈ (−1, 1)
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Fractional Laplacian

For any function u sufficiently regular and for any s ∈ (0,1), the s-th
power of the Laplace operator is given by

(−d2
x )su(x) = CsP.V .

∫
R

u(x)− u(y)

|x − y |1+2s dy .

Functional setting: fractional Sobolev spaces

• Hs(−L,L) :=

{
u ∈ L2(−L,L) : |u(x)−u(y)|

|x−y|
1
2 +s
∈ L2((−L,L)2)

}
.

• ‖u‖Hs(−L,L) :=

(∫ L

−L
|u|2dx +

∫ L

−L

∫ L

−L

|u(x)− u(y)|2

|x − y |1+2s dxdy

) 1
2

.

• Hs
0 (−L,L) :=

{
u ∈ Hs(R) : u = 0 in R \ (−L,L)

}
.
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Existing literature

• R.H. Nochetto, E. Otárola and A.J. Salgado, A. Bonito et al. :

FE schemes for the discretization of elliptic and parabolic
problems involving the spectral Fractional Laplacian
(DIFFERENT OPERATOR).

• G. Acosta et al. :

FE schemes for the discretization 2-D elliptic problems involving
the Fractional Laplacian.
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Variational formulation for the elliptic problem

Find u ∈ Hs
0 (−L,L) such that

c1,s

2

∫
R

∫
R

(u(x)− u(y))(v(x)− v(y))

|x − y |1+2s dxdy︸ ︷︷ ︸
a(u,v)

=

∫ L

−L
fv dx ,

for all v ∈ Hs
0 (−L,L).

Well posedness

a(·, ·) : Hs
0 (−L,L)× Hs

0 (−L,L)→ R
continuous and coercive

⇒
If f ∈ H−s(−L, L), then there
exists a unique weak solu-
tion u ∈ Hs

0 (−L,L).
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Control results

Fractional heat equation


zt + (−d2

x )sz = g1ω, (x , t) ∈ (−1,1)× (0,T )

z = 0, (x , t) ∈ [R \ (−1,1) ]× (0,T )

z(x ,0) = z0(x), x ∈ (−1,1)

Proposition

For all z0 ∈ L2(−1,1) and T > 0, the equation is null-controllable with
a control function g ∈ L2(ω × (0,T )) if and only if s > 1/2.

Proposition

Let s ∈ (0,1) and T > 0. For all z0 ∈ L2(−1,1), there exists a control
function g ∈ L2(ω × (0,T )) such that the unique solution z to the
fractional Heat equation is approximately controllable.

11 / 45



Introduction
Preliminary theoretical results

Development of the numerical scheme
Numerical results

Elliptic problem
Parabolic problem

Proof of the null controllability (sketch)

The result is equivalent to the existence of a constant C > 0 such that
the following observability inequality holds

‖ϕ(x ,0)‖2
L2(−1,1) ≤ C

∫ T

0

∣∣∣∣ ∫
ω

ϕ(x , t)g(x , t) dx
∣∣∣∣2 dt ,

where ϕ(x , t) is the unique solution to the adjoint system
−ϕt + (−d2

x )sϕ = 0, (x , t) ∈ (−1,1)× (0,T )

ϕ = 0, (x , t) ∈ [R \ (−1,1) ]× (0,T )

ϕ(x ,T ) = ϕT (x), x ∈ (−1,1).
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Spectral expansion

ϕ(x , t) =
∑
k≥1

ϕk e−λk (T−t)%k (x), ϕk = 〈ϕT , %k 〉.

The observability inequality becomes

∑
k≥1

|ϕk |2e−2λk T ≤ C
∫ T

0

∣∣∣∣∣∣
∑
k≥1

ϕk gk (t)e−λk t

∣∣∣∣∣∣
2

dt , gk = 〈g1ω, %k 〉.
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Müntz Theorem: the last inequality is true if and only if∑
k≥1

1
λk

< +∞.

Eigenvalues of (−d2
x )s on (−1,1) with DBC1

λk =

(
kπ
2
− (1− s)π

4

)2s

+ O
(

1
k

)
.

The series is convergent if and only if s > 1/2. Therefore, the
observability inequality holds when s > 1/2, but it is false when
s ≤ 1/2.
1 M. Kwaśnichi, J. Funct. Anal., 2012
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First ten eigenvalues of (−d2
x )

s on (−1, 1) with DBC for s ≤ 1/2 (left) and
s > 1/2 (right).

• s ≤ 1/2: the equation is not null-controllable.
• s > 1/2: the equation is null-controllable.
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Proof of the approximate controllability (sketch)

The result follows from the following property.

Parabolic unique continuation

Given s ∈ (0, 1) and ϕT
0 ∈ L2(−1, 1), let ϕ be the unique solution to the

adjoint equation. Let ω ⊂ (−1,1) be an arbitrary open set. If ϕ = 0 on
ω × (0,T ), then ϕ = 0 on (−1,1)× (0,T ).

This, in turn, is a consequence of the Unique Continuation property for
the Fractional Laplacian, obtained by Fall and Felli 2.
2 M.M. Fall and V. Felli, Comm. Partial Differential Equations, 2014..
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Finite element approximation of the elliptic problem

Partition of (−L,L)

−L = x0 < x1 < . . . < xi < xi+1 < . . . < xN+1 = L,
xi+1 = xi + h, i = 0, . . .N.

• M := {xi : i = 1, . . . ,N}.
• ∂M := {x0, xN+1}.
• Ki := [xi , xi+1].

[ ]• • • • •
−L = x0 L = xN+1

x1 x2 xi xi+1 xN

↑ ↑
∂M ∂M

M

Ki
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Consider the discrete space

Vh :=
{

v ∈ Hs
0 (−L,L)

∣∣ v |Ki
∈ P1

}
,

where P1 is the space of the continuous and piece-wise linear
functions.

Discrete variational formulation
Find uh ∈ Vh such that

c1,s

2

∫
R

∫
R

(uh(x)− uh(y))(vh(x)− vh(y))

|x − y |1+2s dxdy =

∫ L

−L
fvh dx ,

for all vh ∈ Vh.
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Given
{
φi
}N

i=1 any basis of Vh, it is sufficient that the discrete
variational formulation is satisfied for

uh(x) =
N∑

j=1

ujφj (x), vh(x) = φj (x)

In this way, we are reduced to solve the linear system Ahu = F
• Ah ∈ RN×N : stiffness matrix with components

ai,j =
c1,s

2

∫
R

∫
R

(φi (x)− φi (y))(φj (x)− φj (y))

|x − y |1+2s dxdy ,

• F ∈ RN given by F = (F1, . . . ,FN) with

Fi = 〈f , φi〉 =

∫ L

−L
fφi dx , i = 1, . . . ,N.
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Basis functions
We employ the classical basis

{
φi
}N

i=1 in which each φi is the tent
function with supp(φi ) = (xi−1, xi+1) and verifying φi (xj ) = δi,j .

φi (x) = 1− |x − xi |
h

.

(xi−1,0)

(xi ,1)

(xi+1,0)(xi ,0)

y

x

φi (x)
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Construction of the stiffness matrix

Remark
Ah is symmetric. Therefore, in our algorithm we will only need to
compute the values ai,j with j ≥ i .
Due to the non-local nature of the problem, the matrix Ah is full.
While computing the values ai,j , we will only work on the mesh M,
not considering the points of the set ∂M. In this way, we will
ensure that the basis functions φi satisfy the zero Dirichlet
boundary conditions.

x0

φ1

x2x1

φ2

x3

φ3

x4 xN−1

φN

xN+1xN

y

x

1

. . . . . . . . .

• •
23 / 45



Introduction
Preliminary theoretical results

Development of the numerical scheme
Numerical results

Elliptic problem
Parabolic problem

The building of the stiffness matrix Ah is done it in three steps
1 We fill the upper triangle, corresponding to j ≥ i + 2.
2 We fill the upper diagonal corresponding to j = i + 1.
3 We fill the diagonal.

a1,1 a1,2 a1,3 . . . . . . . . . . . . a1,N

a2,2 a2,3 a2,4 . . . . . . a2,N

. . . . . . . . .
...

. . . . . . aN−2,N

aN−1,N−1 aN−1,N

aN,N




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Values of ai ,j for j ≥ i + 2

O xi−1

xi−1

xi

xi

xi+1

xi+1

xj−1

xj−1

xj

xj

xj+1

xj+1

y

x
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Values of ai ,i+1

O

xi−1

xi−1

xi

xi

xi+1

xi+1

xi+2

xi+2

y

x
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Entries of the stiffness matrix Ah

s 6= 1/2

ai,j = −h1−2s



4(k + 1)3−2s + 4(k − 1)3−2s

2s(1− 2s)(1− s)(3− 2s)

− 6k3−2s + (k + 2)3−2s + (k − 2)3−2s

2s(1− 2s)(1− s)(3− 2s)
, k = j − i, k ≥ 2

33−2s − 25−2s + 7
2s(1− 2s)(1− s)(3− 2s)

, j = i + 1

23−2s − 4
s(1− 2s)(1− s)(3− 2s)

, j = i.
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Entries of the stiffness matrix Ah

s = 1/2

ai,j =



−4(k + 1)2 log(k + 1)− 4(k − 1)2 log(k − 1)

+6k2 log(k) + (k + 2)2 log(k + 2)

+(k − 2)2 log(k − 2), k = j − i , k > 2

56 ln(2)− 36 ln(3), j = i + 2.

9 ln 3− 16 ln 2, j = i + 1

8 ln 2, j = i .
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Penalized Hilbert Uniqueness Method

We have to solve the following minimization problem: find

ϕT
ε = min

ϕ∈L2(−1,1)
Jε(ϕT )

where

Jε(ϕT ) :=
1
2

∫ T

0

∫
ω

|ϕ|2 dxdt +
ε

2
∥∥ϕT

∥∥2
L2(−1,1)

+

∫
Ω

z0ϕ(0) dx

and where ϕ is the solution to the adjoint problem


−ϕt + (−d2

x )sϕ = 0, (x , t) ∈ (−1,1)× (0,T )

ϕ = 0, (x , t) ∈
[
R \ (−1,1)

]
× (0,T )

ϕ(x ,T ) = ϕT (x), x ∈ (−1,1).
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The approximate and null controllability properties of the system, for a
given initial datum z0, can be expressed in terms of the behavior of the
penalized HUM approach. In particular, we have:

Theorem (F. Boyer, ESAIM: PROCEEDINGS, 2013)

The equation is approximately controllable at time T from the
initial datum z0 if and only if

ϕT
ε → 0, as ε→ 0.

The equation is null-controllable at time T from the initial datum z0
if and only if

M2
z0

:= 2 sup
ε>0

(
inf

L2(0,T ;L2(ω))
Jε

)
< +∞.

In this case, we have

‖g‖L2(0,T ;L2(ω)) ≤ Mz0 ,
∥∥ϕT

ε

∥∥
L2(−L,L)

≤ Mz0

√
ε.
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In order to test numerically the accuracy of our method, we use the
following problem

{
(−d2

x )su = 1, x ∈ (−L,L)
u ≡ 0, x ∈ R \ (−L,L).

In this particular case, the solution can be computed exactly and it
reads as follows,

Solution

u(x) =
2−2s√π

Γ
( 1+2s

2

)
Γ(1 + s)

(
L2 − x2

)s
.
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Error analysis
The computation of the error in the space Hs

0 (−L,L) can be readily
done by using the definition of the bilinear form, namely

‖u − uh‖2
Hs

0 (−L,L) = a(u − uh,u − uh) =

∫ L

−L
f (x) (u(x)− uh(x)) dx .

f ≡ 1 ⇒ ‖u − uh‖Hs
0 (−L,L) =

(∫ L

−L
(u(x)− uh(x)) dx

)1/2

.

The right-hand side can be easily computed, since we have the closed
formula

∫ L

−L
u dx =

πL2s+1

22sΓ(s + 1
2 )Γ(s + 3

2 )

and the term corresponding to
∫ L
−L uh can be carried out numerically.
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Theorem (G. Acosta and J.P. Borthagaray, SIAM J. Numer. Anal.,
2017)

For the solution u of the elliptic problem and its FE approximation uh, if
h is sufficiently small, the following estimates hold

‖u − uh‖Hs
0 (−L,L) ≤ Ch1/2|ln h| ‖f‖

C
1
2−s(−L,L)

, if s < 1/2,

‖u − uh‖Hs
0 (−L,L) ≤ Ch1/2|ln h| ‖f‖L∞(−L,L), if s = 1/2,

‖u − uh‖Hs
0 (−L,L) ≤

C
2s−1 h1/2

√
|ln h| ‖f‖Cβ(−L,L), if s > 1/2,

where C is a positive constant not depending on h.
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10−3 10−2

10−2

10−1 slope 0.5

h

s = 0.1
s = 0.3
s = 0.5
s = 0.7
s = 0.9

The convergence rate is maintained also for small values of s. This confirms
that the behavior obtained for s = 0.1 is not in contrast with the known
theoretical results. Indeed, since it is well-known that the notion of trace is not
defined for the spaces Hs(−L, L) with s ≤ 1/2, it is somehow natural that we
cannot expect a point-wise convergence in this case.
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As a further validation of this fact, we plot the behavior of the L∞-norm
of the difference between the real and the numerical solution to the
fractional Poisson equation.

10−3 10−2

10−0.2

10−0.1

100
slope 0.1

Increasing the number of point of discretization, the L∞-norm is
decreasing with a rate (in h) of 0.1.
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Controllability of the fractional heat equation

We use the finite-element approximation of (−d2
x )s for the space

discretization and the implicit Euler scheme in the time variable.Mh
zn+1 − zn

δt
+Ahzn+1 = 1ωvn+1

h , ∀n ∈ {1, . . . ,M − 1}
z0 = z0

We choose the penalization term ε as a function of h.
PRACTICAL RULE: choose ε ∼ h2p where p is the order of
accuracy in space of the numerical method used for the
discretization of the spatial operator involved. (in this case, we
take p = 1/2).
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Control experiments

Uncontrolled solution - s = 0.8, T = 0.2 s
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Controlled solution - s = 0.8, T = 0.2 s, ω = (−0.3,0.8)
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10−3 10−2

10−3

10−2

10−1

100

slope 0.5

h

s = 0.8

Cost of the control
Size of yM

Optimal energy

For s = 0.8 we observe that:
The control cost and the optimal energy remain bounded as
h→ 0.
|yM |L2(RM) ∼ C

√
φ(h) = Ch1/2.

This confirms that the system is null controllable.
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10−3 10−2

10−1

100

101

102

slope 0.4

sl. −0.18/− 0.3

h

s = 0.5

Cost of the control
Size of yM

Optimal energy

For s = 0.5 we observe that:
The control cost and the optimal energy do not remain bounded
as h→ 0.
|yM |L2(RM) ∼ Ch0.4.

This confirms that the system is only approximately controllable.
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45 / 45


	Introduction
	Preliminary theoretical results
	Elliptic problem
	Parabolic problem

	Development of the numerical scheme
	Elliptic problem
	Parabolic problem

	Numerical results
	Control experiments


