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Parameter dependent problems

Real life applications (may) depend on a large number of
parameters

examples: thickness, conductivity, density, length,
humidity, pressure, curvature,. ..
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Parameter dependent problems (Cont.)

O When dealing with applications and simulations, we would like
to explore within different parameter configurations.

O From the control point of view, this implies solving a different
problem for each configuration.

O Computationally expensive.

OUR GOAL

Apply greedy theory to have a robust and fast numerical solvers.
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Parameter dependent control problem

QcRN, wcQ.

Consider the system

—div(a(x,v)Vy)+cy = xou in Q,
y=0 on 0,

ov is a parameter ou € L?(w) is a control oc = ¢(x) € L=(Q)
Optimal control problem (OCP,)

. 1 B
min J,(u) = E\Uﬁz(w) +5ly -~ valf2(ay:

ueL(w)
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Parameter dependent control problem (cont.)

Optimal control problem (OCP,)

o 1 2 6 2
W0 Ju(u) = §\U|L2(w) + §||y — Yl i2():

3! optimal solution is well-known (Lions, Tréltzsch,...)

Characterization: optimal pair (a, ¥)

U= —xXwq
—div(a(x,v)Vy) + cy = —xwq, in Q,
—div(a(x,”)Vg) + cg=B(7 — y9), inQ, (2)
}7 = (_7 = 07 on 0f2.

As the state y depends on v, also the control u depends on v.
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Parameter dependent control problem (cont.)

—div(a(x,7)Vy)+cy = xuu inQQ,
y = 0 on 897

From the practical point of view,

O Measure parameter v and determine u,

: Lo B 2
uErTL]ZI?w) Ju(u) = §|U|L2(w) + §||y = Ydllz(a)
using classical methods (iterative methods, .. .)

O Repeat the process for each new value of v.

CAN WE DO IT BETTER?
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Greedy control

Assume that v ranges within a compact set  C R? and a, = a(x, v) are
bounded functions satysfing

0<a <a, < ap, veK.

In this way, we ensure that each control can be uniquely determined by
U, = _qu

where (y, §) solve the optimality system (8). Consider the set of controls
i, for each possible value v € K. That is,

U=1{id, vek}

THE IDEA

To determine a finite number of values of v that yield the best possible
approximation of the control manifold I/
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Description of the method

We look for a small number of parameters v € IC approximating the
manifold Z{ in the sense of the Kolmogorov width. Roughly, the
Kolmogorov width measures how well we can approximate I/ by a finite
dimensional space.

With greedy algorithms (Cohen & DeVore, Volkwein, Buffa et. al, ...),
we search for the most representative values of i, .

That is, given a tolerance ¢, the goal is to find
Viyeuns Vn(s)

such that, for any other v € K, the corresponding control &7, can be
approximated by uj € span{d,,,..., i, } and

||u: — ljl,”[_z(w) <e.

We also want to minimize n.
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The surrogate

In practical implementations, the set I/ is unknown.

Given two parameters v; and 1», how can we measure the distance
between i, and i,,?

Recall that we want to avoid to compute i, .
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The surrogate

In practical implementations, the set I/ is unknown.

Given two parameters v; and 1», how can we measure the distance
between i, and i,,?

Recall that we want to avoid to compute i, .

Standard residual: Suppose that we have computed u,,

‘uVl - UV2| ~ v-jllz(uw) - VJVz(UVQ) - VJVZ(UVI)

Compute VJ,,(u,,) = vy, + BS),(S, s, — Ya), where S, is to
control-to-state operator. This means

—div(a,, Vy) + cy = Xwlp,, in Q,
—div(a,,Vq)+cqg=08(y—y9), inQ = —XuGu, = 5,(5, U —yd)
y=q=0, on 09.
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Cheaper surrogates

A cheap surrogate: Instead of using i, and approximate the manifold I/,
use the optimal variables (g, 7,) and approximate the manifold Q x ).

Denoting L,z := —div(a,Vz) + c z, we define

_7 Loy + xwq
Rula.y) = (Lyq By - yd)> '

With this definition, we are able to compute the following estimates:
i (Ily = Folliga +11a = Gl ) < IRu(a V)l n-+(@);

1R, (p, ) ln—10 < (1 + a2)(lly = Wllme) + 119 — Gvll ()
where ¢; and ay only depending on a1, a2 and ||¢||so-

Upper and lower bounds for R,(q,y) are essential for the proof of greedy
algorithms in terms of the Kolmogorov width.
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Main results

o Luy + xwq
Rla.y) = <Lyq —Bly - Yd)> ' ©

Theorem 1 (in progress H-S, Lazar, Zuazua, '17)

The residual (3) provides the approximation estimates for optimal
controls and states

o |up— b2 < *HR (@ )l @

_ 1
o Iy Tl < (a) 1R Y)l-sqee

where ¢; and a; only depend on aj, a2 and ||¢||oo-
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Offline algorithm

Step 1: Initialization. Fix € > 0. Choose any v € K, v = v; and

compute the minimizer of J,,. This leads to < ?yl )
Y

Step 2: recursive choice of v.

Assuming we have chosen v, ..., v,, we choose v, as the maximizer of

) 0 — — . Luy+qu
Lnea/%(dlst (( 4 ),Ru(Qp;yp)> , Rua,y)= (L,,qﬂ(y }/d)>

Step 3: Stopping criterion. Stop if the max < ¢.

Theorem 1 (in progress H-S, Lazar, Zuazua, '17)

The offline algorithm stops after ng(e) iterations, and fullfills the require-
ments of the greedy theory.
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Online algorithm

After choosing the most representative values of v, we can
construct an approximated optimal control u for any arbitrary

given value v € K by taking
k
U; = Z )\ic_lzz,-|w
i=1

. - 0
where \; are determined by the projection of the vector ( ) to
Yd

the space
span{Ru(Gus: ¥un ) - - - » Ru(Guys ) }
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NUMERICAL RESULTS




Numerical examples

O Q=(0,1)2in2-D or Q =(0,1) in 1-D.
O Uniform meshes, i.e., meshes with constant discretization

steps in each direction, N = 400.

O We will approximate the operator A = —div(a(x, )V -) by
using the standard 5-point discretization.

O Discretize-then-optimize.
O vek=][110],
O K sampled in 100 equidistant points.
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Greedy test # 1

oa(x,v) =1+ v(x®+x%), oc(x)=sin(2mx)sin(2mx2),
oyq = sin(mx;), ofB=10% oe=10.005

O tcheap = 304s, o tsg = 384s

v
op (ZZ)

L L L L 3L
1 3 5 7 107 2 4 6 8

Iteration n

(a) Selected v (b) Approximation error
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Approximation for v = 7/2

(c) The approximated control (d) The control set w

olu} ), = G jaliz(w) = 1.45 x 107°,  toniine = 0.455,  titerative = 0.01s.
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Approximation for v = 7/2 (cont.)

X2

(e) The controlled state (f) The state Y= /2 and the target
function y? (dashed)

© ‘y;/Q - }77r/2|L2(Q) ~1.15x 1077
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Greedy test # 2

oa(x,v) =1+wvx?(1—x)?, oc(x)=—15sin(mx), ©°y4 = X(0.508)
B =10% ow=(0.3,0.9), oe=0.005

o tcheap = 0.68s, o tsyg = 0.809s

- - - L L L L L
1 3 5 1 2 3 4 5
Iteration n

(g) Selected v (h) Approximation error
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Greedy test # 2

1k 4

0.8+ i
0.6 B

04 |
02 |
0
o 02 o4 06 08 1 0o 02 o4 06 08 1
(i) The approximated control (J) The state yy, (blue) and the

target y (red)

o[uf = Orpalizgw) = 117 X 107°%, oly% ) = Vrj2lliz() = 5.09 x 1077,
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CONNECTION WITH THE
TURNPIKE PROBLEMS




Time dependent control problem

Consider
Ory —div(a(x,v)Vy) +cy = xou in Q=Qx(0,T),
y=0 on L =00x(0,T), (4)
y(x,0) = y°(x) in Q.

and the control problem

. 1 T B T
min A7) = 5 [ lOder 5 [ 10 -y

The optimal solution (u”,y ") satisfies

Iy (&) =Tz + 0T ()= llizgey < K (€7 + e T=9) | vee[o,T)

O Exponential convergence of the finite-time horizon control problem
to the steady one as T — oc.
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The case c(x) > 0 (greedy test #1)

u(x, t) = uy »(x),  yo(x) = sin(3mx1) sin(27mx,)
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The case ¢(x) < —)\; (greedy test #2)

u(x, t) = u;/2(x), Yo(X) = X(0.4,0.9)

1 T T T T T T T T |
——Solution y
8.8 —— Steady state z| |

0.8 -
0.7 [
0.6 -
0.5
0.4
0.3

0.2 -

L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

11 ¥ Time=5s
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The case ¢(x) < —)\; (greedy test #2)

1 T T T T T T T T T
R —— Steady state z| |
0.8 |
sl
0.6
05
04
031

0.2 -

0 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A |  Time=5s X
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THANK YOU!
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