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Russell’s contribution to
Infinite Dimensional Systems Theory

* Definition and duality of various observability and controllability
concepts

* First controllability results for heat and wave equations

e Hautus test in infinite dimensions

* From the wave to the heat equations

* Weak observability implies polynomial stabilizability

* Backwards and forwards stabilizability implies controllability
(Russell’s principle)
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Russell’s principle: backwards and forwards
exponential stabilizability implies exact controllability

Let X, U and Y be Hilbert spaces, A a semigroup generator, B € L(U, X)
a control operator and ' € £(X,Y ) an observation operator.

Theorem. (Russell, 1973) Assume that there exist K, K; € L(Y,U) such
that A + BK; and —A + BKj generate exponentially stable semigroups.
Then the pair (A, B) is exactly controllable in some time 7 > 0.

Proof. Let 7 > 0 be such that ||e™(~A+BE) o7 (A+BE) )| 1 Tet 25 € X and
let 2(t) = ws(t) — wy(t), where

wp(t) = (A+ BEpws(t),  wp(0) = (I — TA+BE) or(A+BE)) T4
wy(t) = (A — BKb)w( ), wp(T) = wy(T).
Setting u(t) = BKyw(t) — BKywy(t) we have
2(t) = Az(t) + Bu(t), 2(0) = 2o, z(1) = 0.
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Some remarks

* This principle has been originally seen as providing a qualitative property
(controllability) from another qualitative property (stabilizability). It also holds for
unbounded control operators.

* The converse principle “controllability implies stabilizability also holds for
bounded control operators. It does not hold, in general, for unbounded ones.

* |t looks unobvious how to use Russell type controls computationally. Indeed, they
require, in principle, the knowledge of 7, K, K,..

* |n this presentation we use a different perspective
 We assume that (A,B) is exactly controllable in time .
* With some extra structure, we obtain “explicit” Russell controls in time .
* We prove that these controls have remarkable properties.
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Outline

* A version of Russell’s principle for vibrating systems
* From exact controllability to uniform stabilizability
* Aregularity result

* From distributed control to boundary control :
* Neumann boundary control
* Dirichlet boundary control
* a general singular perturbation approach

e Approximation by finite dimensional systems
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A version of Russell’s principle
for vibrating systems
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Standing assumptions

Let H be a Hilbert space and let Ag : D(Ap) — H be a strictly positive
operator. For a > 0, H, is D(AS) with the graph norm. H_, = (Ha)".

YV is another Hilbert space and C' € L(H1,)) is an observation operator.
2
Assumptions:

(H1) There exists v > 0 such that ||sC(s*I+ Ag) 'C*||z0) < dy if Res =
(H1’) The system (Ag, C*, ') is well-posed.

(H2) There exists 7 > 0, K; > 0s. t. K2 [][[Cp(t)]|7dt > HfH2 + lgl?,
holds for every f € Hy, g € ’H% and p satistying

p(t) +Aop(t) =0  ,p(0)=f,  p0) =g
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From exact controllability
to uniform stabilizability

Theorem 1. (Ammari and M.T. 2002) Assume that Ag and C' satisfy the

assumption (H1)and (H2) above. Then there exist m,~ € (0, 1), depending
only on v, d,, 7 and K; such that the estimate

o ()12 + ()13 < mesy (1(0)]2 + Jw(O)]3)

holds for every solution w € C([0,00);H1) N C([0,00); H) of

1
2

W (t) + Agw(t) + C*%Ow(m _ 0.

Remark. The converse of the above result is true (with the same 7) by
Russell’s principle.
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Construction of Explicit Russell Controls

Assume that Ag, C satisfy the assumption (H1) and (H2) and set B = C*.
Solve:

w(t) + Agw(t) + B% (B*w(t)) =0, w(0) = v, w(0) = ¢,

wb(t)+Aowb(t)—B% (B*wb(t)) — 0, Wb () = w(r), W*(r) = w(r).

wo| _ [w®(0) - - !
) ] =

Setting [w(’] — (I - L)} [f ] . q(t) = w(t) — wp(t) we obtain:

1 g
u(t \
G(t)+Aoq(t)+B :% (B*’w(t) +B*wb(?l)of70’ [%] - [ﬂ [gg] N [8]
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Two properties

e Russell type controls preserve the regularity of the initial data. For
instance, if B € L(U,H) and BB* € L(H;,H1) and [#] € Hs x H;
2 2
then

| = (= L) TN (8] € Hy x Hy,

so that v € C1([0,7];U) and Bu € C([0,7]; H1).

2
(see Weiss and M.T, Ervedoza and Zuazua, Dehman and Lebeau for
related regularity results).

e These controls are (in principle) easy to compute. Indeed,

(I — L’T)_l — ZL?7

n=0

and computing L» is just folving n times forward and n times back-
wards the closed loop system. 5
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From distributed control
to boundary control
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Neumann boundary control (l)

Consider the problems (P-).~q

H? (e 1

Je(x,t) + 92 (z,t) + ﬁﬂ[oﬁ] (2)ue(x,t) =0, ((x,t) € (0,7) x [0,7])
O =am)=0 (>0
qg(LU,O) — f(:l?), (].5(3?,0) — g(.’IJ) (33 S (Oaﬂ-))a

and the problem F

. d*qo
Go(x,t) + W(:E’t) =0, (x,t)€|0,7]x|[0,7]

dqo dqo
f— _— p— >
0.1 =w),  P(ry=0, (>0

QO(ajvo) — f(CC), QO(xvo) — g(ZE), x < [Ovﬂ-]'
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Neumann boundary control (Il)

Theorem 2. (Hansen and M.T., 2017)

Given 7 > 2w, f € HY(0,7), g € L?[0,n] with f(7) = 0, there exists a
family (ue).e(o.r) in L*([0,7]; L*[0, 7]) and ug € L?[0, 7] such that

1. For each € € (0,7) the solution of (FP;) satisfies

g (x,7) =0, ¢(z,7) =0, x € |0, 7l;

2. lim__ g+ %ug]l[ojg] = ugdp weakly in L?([0, 7]; H~1(R)), where g stands
for the Dirac mass concentrated at the origin;

3. lim,_,o+ (H% — QOHC([O,T];Hl(O,ﬂ)) + [Ige — q.OHC([O,’T];LZ[O,ﬂ’])) = 0, where
qo is the solution of (F).

tttttttttt
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Dirichlet boundary control (|

For € € (0, 7) we consider x. € D(R) s.t. xc >0, xe = 1 if [z] < 2 and

|
Xe vanishes if [z| > 2. We introduce the control problems (P=)ec(0,7):

Ge(x, 1) + %xqg (x,t) + Xi/(? us(x,t) =0 ((z,t) € (0,7) x [0,7]),
qc(0,t) = qe(m,t) =0 (t>0)
q¢e(z,0) = f(z), ¢e(2,0) = g(z) (z € (0,m)).
The problem (Fp) is
. 0% qo
Go(x,t) + W(m,t) =0 ((z,t) € (0,7) x [0,7])
q0(0,t) = uo(?), qo(m,t) =0 (t=>0)
q(z,0) = f(x), qo(z,0)=g(x) (€ (0,m)).
.
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Dirichlet boundary control (I1)

Theorem 3. (Hansen and M.T., 2017) Given 7 > 27, f € L?[0,7], g €
H~0,7), there exists a family (ug)ge(oj%n) in L2([0,7]; H~1(0, 7)) and ug €

L?[0, 7] such that
1. For each e € (0, 4”) the solution of P. satisfies ¢.(-,7) =0, ¢.(-,7) = 0.

2. For every ¢ € L?([0,7]; H*(0,7) N H}(0,7)) we have

i [ [Pt = [

3. lim. o+ (lge — qolle(o,r;L2(0,7)) + 1de — dollepo,r:m-1(0,7))) = 0, where
qo is the solution of (Fp).

Moreover, if f € H}(0,7) and g € L?[0, 7] then the family (u.) ce(0,4x) can
be chosen in L?([0, 7]; L2[0, 7]).
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Bibliographical comments

* Only few works on this topic seem to available in the literature.

* For the Neumann control (even in 1D) we are not aware of results
similar to those in Theorem 2. The related questions of internal
pointwise controllability has been tackled in Fabre (1994) and Joly
(2006).

e For the Dirichlet control, the results of Fabre and Puel (1992, 1993)
provide convergence in a weak sense (in one or several space
dimensions)

:::::::::
Benasque 2017 Mathématiques de 16

BBBBBBBB



Benasque 2017

An abstract framework

Let £g > 0 and let (B
We consider the control problems (F%)

q(t) + Aoq(t) q(0) = f,

We will also need to refer to the homogeneous system (H.5)

p(0) = f,

— BEu(t)a

B(t) + Aop(t) =0, »(0) = g.

Basic assumptions:

K2 / 1Bze(0)IF e > £ + gl

sBE(2T + Ao) ™ Bel| ey < d
lim B.BIf = ByBf

e—01

for some By € E(b{o,%_%).

in H

1
2

> )

Institut de
Mathématiques de
BBBBBBBB

q(0) = g.

(e € (0,e9), Res
(f € Hi),

e)ec(0,c0) C L(U,H) be a family of input operators.
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A singular perturbation result

Theorem 4. With the above notation and assumptions, for every f € H1
2

and g € H there exists a family of controls (uc)ec(0.y) in L*([0,7];U) such
that

1. The corresponding family (q.) of solutions of (P:) satisfies
QE(T) — 0, QE(T) =0 (E - (O,Eo)).

2. There exists ug € L*([0, 7];Up) s. t.
Go(t) + Aogo(t) = Bouo, qo(0) = f, ¢o(0) =g, qo(r) =0, go(r) =0

lim B.u. = Boug weakly in L? ([O,T]; 7—[_1> .
2

e—07t

3. The corresponding controlled trajectories satisty

I; _ , . — . = 0.
8_1>151+ (qu QOHC([O,T],H%) + [|ge CJO||C([0,T],’H))
>2>)
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Comments on the proofs

The proof of Theorem 4 relies on Theorem 1.1 and on the Trotter-Kato
theorem.

Checking assumption (1) for 1D problems is relatively easy. In the case
of Neuman control, for instance, a basic estimate is

| e

where ¢y, (z) = cos [(n — 3) x].

(e € (0,m), ne€N).

wlm

Checking (2) requires long calculations in 1D and limits the applica-
bility to several space dimensions.

Checking (3) is untrivial even in 1D. Generalizations of this approx-
imation property to several space dimensions have been discussed by

Joly (2006).
N o i 4
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Approximation by finite
dimensional systems

||||||||||
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Standing assumptions

Let H be a Hilbert space and let Ay : D(Ag) — H be a strictly positive
operator. For a > 0, H,, is D(AY) with the graph norm. H_, = (Ha)".

U is another Hilbert space and By € L(U, H) is control operator. We assume
that (Ag, Bp) is exatly controllabl in time 7.

Assume that there exists family (V},)n>0 of finite dimensional subspaces
of H:1 and that there exist § > 0, h* > 0, Cy > 0 such that, for every

2
h € (0,h"),
Imne —¢lls < Colllelh (v € Hy),

Imhe = el < Col’llelly (v € Hy),

where 7, is the orthogonal projector from H:1 onto V.
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A numerical scheme (I)

wy (t) + Agpwy, (t) + BOhBSh'U'JZ(t) =0 (t > 0)

neo) — Thqo, ifn=1
Wh(0) =\ wpl0), i1 <n < N(h)
(0 — Thq1, itn=1
wy, (0) = wz;l(()), if 1 <n < N(h),

A backward system

Wy, (t) + Aopwy (1) — Bon Bopgp(t) =0 (¢ < 7)

wyp(T) = wp(7), Wy (7) = wp(7)
07/7
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A numerical scheme (ll)

e Compute [th] as follows
Wik
N (h wr N(h)+1 o
[w%] _ [th()] Z { 01 S [whm)]
wip Th1| 0 — |up(0)]

Up, = Bf)"hu')h + BShwb,h7

where wy, and wy, are the solution of
wh(t) -+ A()hwh(t) -+ BOth’jhu')h(t) =0 (t = 0)

wp(0) = wop, wWp(0) = wip,
We,p (1) + Aopwp b (t) — BonBopwpn(t) =0 (t<7)

wyn(7) = wa(T), _ uyn(T) = Wp(T).

t tut
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A numerical scheme (lIl)

Theorem. (Cindea, Micu and MT, 2011)

With the above notation and assumptions, assume furthermore that the sys-
tem is exactly controllable in some time 7 > 0 and that BoBj € L(H1,H1).
2

Then there exists a constant m, > 0 such that the family (up)p~0 of C(|0, 7]; Up),
with N(h) = [#m;In(h™!)], converges when h — 0 to an exact control in
time 7, denoted by u, for every Qo = [£7] € 7—[% X H1. Moreover, there exist

constants h* > 0 and C := C.- such that we have

lu — unllc(omuy < CRY lnz(h_l)HQoH%% 1, (0<h<h").

> )
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A numerical scheme (IV)

Main steps of the proof:

e Use standard numerical analysis to get that

Ca +tC3
1— HLTHL(’H% < H1)

(= vn) (8) lor < hellQoHH%xm (t €10, 7]),

Vp, (t) = BZTh,tHhWO -+ Bzgh,fr—tTh,TﬂhWO (t c [0, T])

e Note that

00 N(h)
|(vn = un) (Bl < C{|>_LrQo— Y Lit 15 Qo

> )
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