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The motion of a rigid body immersed in a perfect
two-dimensional fluid

Ω = F(t) ∪ S(t) ⊂ R2

∂S(t) : u · n = uS · n

Ω
F(t) : Euler

∂u
∂t

+ (u · ∇)u +∇p = 0

S(t) : Newton

∂Ω : u · n = 0

div u = 0
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Solid: rigid movement:

S(t) = h(t) + R(ϑ(t))(S(0)− h0),

uS(t, x) = h′(t) + ϑ′(t)(x − h(t))⊥,

where

I h(t) ∈ R2 - center of mass

I ϑ(t) ∈ R - angle variangle

I R - matrix of rotation
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(h, ϑ): Newton’s law (force = fluid’s pressure on the boundary)

mh′′(t) =

∫
∂S(t)

p n dσx ,

J ϑ′′(t) =

∫
∂S(t)

p (x − h(t))⊥ · n dσx .

where

I m > 0 - mass

I J > 0 moment of inertia

I fluid density = homogeneously 1

József J. Kolumbán External boundary control of the motion of a body in a fluid



Introduction
Scheme of Proof

A reformulation of the model as an ODE
Control of a simplified equation

Strategy for exact controllability

We assume that the fluid is irrotational at the initial time.

∫
∂S(t)

u(t) · τ dσ =
∫
∂S(0)

u0 · τ dσ = γ ∈ R

Helmholtz:

curl u0 = 0 in F(0)
⇓

curl u = 0 in F(t)

Kelvin:
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The Cauchy problem for this system is now well-understood.

O. Glass, F. Sueur, Uniqueness results for weak solutions of
two-dimensional fluid-solid systems, (Résultats d’unicité pour des solutions
faibles de systemes fluide-structure bidimensionnels), published in Archive
for Rational Mechanics and Analysis, 2015.

J.-G. Houot, J. San Martin, M. Tucsnak, Existence and uniqueness of
solutions for the equations modelling the motion of rigid bodies in a
perfect fluid. J. Funct. Anal., 259(11):2856–2885, 2010.

J. Ortega, L. Rosier and T. Takahashi, On the motion of a rigid body
immersed in a bidimensional incompressible perfect fluid. Ann. Inst. H.
Poincaré Anal. Non Linéaire, 24(1):139–165, 2007.
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There are also several papers devoted to derive simplified models
for this system when the solid has a small size, or the control acts
on the boundary of the solid.

O. Glass, C. Lacave, F. Sueur, On the motion of a small body immersed in
a two dimensional incompressible perfect fluid, Bull. Soc. Math. France
142 (2014), no. 2, 1–48.

O. Glass, A. Munnier, F. Sueur, Dynamics of a point vortex as limits of a
shrinking solid in an irrotational fluid, preprint 2014, arXiv:1402.5387.

O. Glass, L. Rosier, On the control of the motion of a boat, (Controle du
mouvement d’un bateau), published in Mathematical Models and
Methods in Applied Sciences, 2013.
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The control problem - Yudovich-type control

Let T > 0, Σ ⊂ ∂Ω, find g ∈ C 1
0 ([0,T ]× Σ) with

∫
Σ
g = 0 s.t.

where u · n < 0

curl u = 0 on Σ

u · n = 0 on ∂Ω \ Σ

Σ ⊂ ∂Ω

u · n = g(t, x) on Σ
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Compatible initial and target data

S(0) ⊂ Ω bounded, closed, simply connected with smooth
boundary, u0 ∈ C 1(F(0);R2), γ ∈ R,
h0, h1 ∈ Ω, h′0, h

′
1 ∈ R2, ϑ0 = 0, ϑ1, ϑ

′
0, ϑ
′
1 ∈ R, such that

I (h0, 0) and (h1, ϑ1) are in the same connected component of

Q = {(h, ϑ) : d (∂Ω,S(h, ϑ)) > 0}

I u0 · n = 0 on ∂Ω, u0 · n = (h′0 + ϑ′0(x − h0)⊥) · n on ∂S(0)

I div u0 = curl u0 = 0 in F(0)
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Main result

Theorem
Under the above conditions, there exists g ∈ C 1

0 ([0,T ]× Σ) and a
solution (h, ϑ, u) ∈ C 2([0,T ];Q)× C 1([0,T ];C 1(F(t);R2)) of the
control system, which satisfies

(h, h′, ϑ, ϑ′)(T ) = (h1, h
′
1, ϑ1, ϑ

′
1).

József J. Kolumbán External boundary control of the motion of a body in a fluid



Introduction
Scheme of Proof

A reformulation of the model as an ODE
Control of a simplified equation

Strategy for exact controllability

Our strategy consists of three steps:

I reformulating the model as an ODE in (h(·), ϑ(·)),

I proving that there exists a controllable simplified equation
which is close to the model,

I concluding by some Brouwer-type topological arguments that
the model is also controllable.
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We denote

I q = (h, ϑ), q′ = (h′, ϑ′), for any (h, ϑ) ∈ Q, (h′, ϑ′) ∈ R3,

I S(q) = h + R(ϑ)(S(0)− h0) and F(q) = Ω \ S(q),

I q(t) = (h(t), ϑ(t)), t ∈ [0,T ].
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Decomposition of the fluid velocity

We know that u is the solution of the following div/curl system:

div u = curl u = 0 in ∈ F(t),

u · n = 1Σg on ∂Ω,

u · n = uS · n on ∂S(t),∫
∂S(t)

u(t) · τ dσ = γ.

Since this system is linear in u, it can be uniquely decomposed
with respect to the last three equations. For this decomposition,
we introduce the following functions.
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Let α ∈ C 2([0,T ]×F(t);R) such that

∂nα(t, x) = g(t, x) on [0,T ]× Σ

∂nα(t, x) = 0 on [0,T ]× ∂S(t)

∆xα(t, x) = 0 in [0,T ]×F(t)

∂nα(t, x) = 0 on [0,T ]× ∂Ω \ Σ
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The Kirchhoff potentials Φ(q, ·) = (Φ1,Φ2,Φ3)(q, ·) are defined as
the solution of the Neumann problem

where n = (n1, n2)∂nΦi(q, x) = 0 for x ∈ ∂Ω

∆xΦi(q, x) = 0 for x ∈ F(q)

∂nΦ1(q, x) = n1

∂nΦ2(q, x) = n2

∂nΦ3(q, x) = (x − h)⊥ · n
for x ∈ ∂S(q)
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The stream function ψ(q, ·) for the circulation term is defined in
the following way. There exists a unique C (q) ∈ R, such that the
solution of the Dirichlet problem

satisfies
∫
∂S(q)

∂nψ(q, x) dσ = −1ψ(q, x) = 0 for x ∈ ∂Ω

∆xψ(q, x) = 0 for x ∈ F(q)

ψ(q, x) = C (q)

for x ∈ ∂S(q)
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Decomposition of the fluid velocity

Lemma
Given q ∈ C 2([0,T ];Q), g ∈ C 1

0 ([0,T ]× Σ), we have that

u(t, x) = ∇α(t, x) +∇(q′(t) · Φ(q(t), x)) + γ∇⊥ψ(q(t), x),

is the unique solution of the Euler equation on [0,T ]×F(q(t))

with ∇p = −∂tu − ∇x |u|2
2 .

József J. Kolumbán External boundary control of the motion of a body in a fluid



Introduction
Scheme of Proof

A reformulation of the model as an ODE
Control of a simplified equation

Strategy for exact controllability

In order to reformulate the model as an ODE, we introduce the
following quantities.
We introduce the genuine and added mass matrices

Mg =

 m 0 0
0 m 0
0 0 J ,


respectively,

Ma(q) =

(∫
F(q)
∇Φi (q, x) · ∇Φj(q, x) dx

)
i ,j=1,2,3

,

which is a symmetric and positive-semidefinite Gramian matrix,
their sum

M(q) =Mg +Ma(q).
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The bilinear map Γ(q) is defined as

〈Γ(q), p, p〉 =

 ∑
1≤i ,j≤3

Γk
i ,j(q)pipj


1≤k≤3

∈ R3, ∀p ∈ R3,

where, for each i , j , k ∈ {1, 2, 3},

Γk
i ,j(q) =

1

2

(
(Ma)ik,j + (Ma)jk,i − (Ma)ki ,j

)
(q),

with

(Ma)ki ,j :=
∂(Ma)i ,j
∂qk

.
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Finally, we introduce the quantities

B(q) =

∫
∂S(q)

∂nψ(q, x) (∂nΦ(q, x)× ∂τΦ(q, x)) dσx ,

and

E (q) = −1

2

∫
∂S(q)

|∂nψ(q, x)|2∂nΦ(q, x) dσx .

József J. Kolumbán External boundary control of the motion of a body in a fluid



Introduction
Scheme of Proof

A reformulation of the model as an ODE
Control of a simplified equation

Strategy for exact controllability

We define

I FΓ(q, q′) = −(M(q))−1〈Γ(q), q′, q′〉

I GΩ(q, q′, γ) = (M(q))−1(γ2E (q) + γq′ × B(q))

I F (α, q, q′, γ) = sum of all integral terms containing α
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A reformulation of the model as an ODE

Proposition

We have that (q, u) is a solution of the fluid-solid system if and
only if q satisfies an ODE of the form

q′′(t)− FΓ(q(t), q′(t)) = F (α, q(t), q′(t), γ) + GΩ(q(t), q′(t), γ),

t ∈ [0,T ], with initial data

q(0) = q0 := (h0, 0), q′(0) = q′0 := (h′0, ϑ
′
0).
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A simplified equation

We claim that

I for small values of γ ⇒ GΩ(·, ·, γ) has little impact on the
dynamics,

I for good choices of α ⇒ F (α, ·, ·, γ) will behave like the sum
of two Dirac approximations in time.
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A simplified equation

Therefore, we consider the following impulsive control system
where the control is given by k0, k1 ∈ R3, which we can control by
geodesic arguments.

q′′(t)− FΓ(q(t), q′(t)) = k0δ0(t) + k1δT (t), t ∈ [0,T ],

q(0) = q0, q
′(0) = q′0,

where δ0 and δT denote the Dirac distributions at time 0 and T .
We further set, for δ > 0 small enough,

Qδ = {(h, ϑ) : d (∂Ω,S(h, ϑ)) ≥ δ}.
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Geodesic arguments for the simplified equation

There exists c0, c1 and a geodesic of the normal form generated by
FΓ connecting (q0, c0) with (q1, c1) in Qδ in time T . We may pick
our control k0 := c0 − q′0, k1 := q′1 − c1.

q′′ = FΓ(q, q′)

q0

c0

q1

c1
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Approximation via impulsive control

In order to be close to this simplified equation, we will use
impulsive controls at the beginning and at the end of our time
interval, to replicate the behaviour of the Dirac distributions.
Namely, we will use controls of the form

g(t, x) = gε(t, x) := βε(t)g1(x),

where β2
ε is a Dirac approximator, as ε→ 0+.
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Therefore, in the case of small γ and small ε > 0, the dominant
term in F (α, q(t), q′(t), γ) will be

M(q(t))−1

∫
∂S(q(t))

|∇α(t, x)|2

2
∂nΦ(q(t), x) dσ.

For given circulation γ ∈ R, let qε,γ = (hε,γ , ϑε,γ) be the
associated trajectory of the solid.
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Observe that
αε(t, x) = βε(t)α(qε,γ(t), x),

where α(q, ·) as the solution of

∂nα(q, x) = g1(x) for x ∈ Σ

∂nα(q, x) = 0 for x ∈ ∂S(q)

∆xα(q, x) = 0 for x ∈ F(q)

∂nα(q, x) = 0 for x ∈ ∂Ω \ Σ
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Difficulty: F (α, ·, ·, ·) contains terms involving ∂tα, βε is
compactly supported in time ⇒ we will need to handle carefully
any terms containing β′ε.

On the other hand, the dominant term in F (α, q, q′, γ) becomes

F (α, q) =M(q)−1

∫
∂S(q)

|∇α(q, x)|2

2
∂nΦ(q, x) dσ.

Given q ∈ Q, we claim that we can choose g1 such that F (α, q)
can attain any given direction, up to an arbitrarily small error.
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Choosing the impulsive control

Proposition

For any ν > 0, v ∈ R3, q = (h, ϑ) ∈ Q, there exists
α(q, ·) ∈ C 8(F(q)) such that

∆xα(q, x) = 0 in F(q), ∂nα(q, x) = 0 on ∂F(q) \ Σ,

and ∣∣F (α, q)− v
∣∣ ≤ ν,∫

∂S(q)
α(q, x) ∂nΦ(q, x) dσx = (0, 0, 0).
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The limit trajectory

Consider q̄ = (h̄, ϑ̄) : [0,T ]→ Q defined by

q̄′′(t) = FΓ(q̄(t), q̄′(t)), ∀t ∈ [0,T ],

q̄(0) = q0,

q̄′(0) = q′0 + F (α, q0).
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Approximation result

Proposition

Assume that∫
∂S(q0)

α(q0, x) ∂nΦ(q0, x) dσx = (0, 0, 0).

(key assumption in order to tackle the terms containing β′ε)
Then, we have

lim
(ε,γ)→0

‖qε,γ − q̄‖C1((0,T ]) = 0.
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The case of small γ
The case of large γ

Concluding ideas

I In the case γ = 0, for any q0, q1 ∈ Ω0, there exists c0, c1 and
a geodesic associated with FΓ connecting (q0, c0) with (q1, c1)
in time T .

q′′ = FΓ(q, q′)

q0

c0

q1

c1
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The case of small γ
The case of large γ

I We may pick our control such that the initial jump in velocity
made by the trajectory q̄ is exactly a jump from q′0 to
c0 +O(ν). Using the stability of the geodesic, we deduce that
|(q̄(T ), q̄′(T ))− (q1, c1)| = O(ν).

I We may use similar arguments to add another impulsive
control at the end of the time interval which creates a jump in
velocity from c1 to q′1 +O(ν).
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The case of small γ
The case of large γ

I For small γ and ε, we end up with a trajectory qε,γ which at
time T is close to (q1, q

′
1), with respect to ν, γ and ε.

I We conclude that in fact we may attain exactly (q1, q
′
1), by

using a Brouwer-type topological argument .
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The case of small γ
The case of large γ

A time-rescale argument (Coron)

Let γ ∈ R, λ ∈ (0, 1).

I Finding a solution of our ODE transporting (q0, q
′
0) to (q1, q

′
1)

in time λT with circulation γ is equivalent to finding a
solution transporting (q0, λq

′
0) to (q1, λq

′
1) in time T with

circulation λγ.

I We may construct the latter using our previous strategy, for
small enough λ.

I Therefore, we have managed to arrive to our target (q1, q
′
1),

but in shorter time, λT . To fix this, we pick λ such that it
also satisfies 1−λ

2λ ∈ N.
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The case of small γ
The case of large γ

I We may simply keep jumping back and forth between the
states (q0, q

′
0) and (q1, q

′
1) until time T , by using the

reversibility of the equation.

λT

q0

q′0

q1

q′1

λT
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The case of small γ
The case of large γ

Thank you for your attention!
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