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• P

• (ex , ey ) =
e
(
cos(Ω + ω), sin(Ω + ω)

)
• (hx , hy ) =
tan( i

2
)
(
cos(Ω), sin(Ω)

)
• L = Ω + ω + w

Figure: Orbital parameters

Remark

In 2D :

• ~h = ~0 because i = 0

• L = ω + w
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Optimal transfer problem:

let tf > 0, Tmax > 0 and �nd
α ∈ L∞([0, tf ], [0,Tmax ]), φ ∈ L∞ : R→ R such that:

min
α,φ
−m(tf ) = −m0 + β

∫ tf

0

α

Ṗ =
1

m

√
P

µ

2P

W
α sin(φ)

ėx =
1

m

√
P

µ
α
(

sin(L) cos(φ) +
(

cos(L) +
cos(L) + ex

W

)
sin(φ)

)
ėy =

1

m

√
P

µ
α
(
− cos(L) cos(φ) +

(
sin(L) +

sin(L) + ey
W

)
sin(φ)

)
ṁ = −βα

L̇ =

√
µ

P

W 2

P

x(0) = (P0, e0x , e0y ,m0, L0), x(tf ) = (P1, e1x , e1y ,−,−)

with W = 1 + ex cos(L) + ey sin(L)
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Pontryagin's principle

min
u

∫ tf

0

f 0(s, x(s), u(s))ds + g(tf , x(tf ))

ẋ(t) = f (t, x(t), u(t))

x(0) ∈ M0, x(tf ) ∈ M1

• ẋ(t) = ∂H
∂λ (t, x(t)), λ(t), λ0, u(t))

λ̇(t) = −∂H∂x (t, x(t)), λ(t), λ0, u(t))
, ∀t ∈ [0, tf ]

• H(t, x(t), λ(t), λ0, u(t)) = max
v∈Ω

H(t, x(t), λ(t), λ0, v), ∀t ∈ [0, tf ]

• λ(0) ⊥ Tx(0)M0

λ(tf )− λ0 ∂g∂x (tf , x(tf )) ⊥ Tx(T )M1

• H(tf , x(tf ), λ(tf ), λ0, u(tf )) = −λ0 ∂g∂t (tf , x(tf ))

with
H(t, x , λ, λ0, u) = (λ|f (t, x , u)) + λ0f 0(t, x , u)
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We introduce the state x = (P, ex , ey ,m, L) and the adjoint-state
λ =

(
λP , λex , λey , λm, λL

)
and after the application of the Pontryagin's

Principle we get:

˙̄x(t) =
∂H

∂λ
(x̄(t), λ̄(t), ᾱ(t), ¯φ(t))

˙̄λ(t) = −∂H
∂x

(x̄(t), λ̄(t), ᾱ(t), ¯φ(t))

H
(
x̄(t), λ̄(t), ᾱ(t), ¯φ(t)

)
> H

(
x̄(t), λ̄(t), α, φ

)
,∀α ∈ [0,Tmax ],∀φ ∈ R

H
(
x̄(tf ), λ̄(tf ), ᾱ(tf ), φ̄(tf )

)
= 0, free time tf

λ̄(tf ) = 0, free L(tf )

λ̄m(tf )− 1 = 0, free m(tf )
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Introducing the function Φ as the function of commutation we obtain
bang-bang control such that:

ᾱ =


0, if Φ(x̄ , λ̄, φ̄) < 0

∈ [0,Tmax ], if Φ(x̄ , λ̄, φ̄) = 0
Tmax , if Φ(x̄ , λ̄, φ̄) > 0

cos(φ̄) = λ̄ex ∗ sin(L̄)− λ̄ey ∗ cos(L̄)

sin(φ̄) = λ̄P
2P̄

W̄
+ λ̄ex

(
cos(L̄) +

cos(L̄) + ēx

W̄

)
+ λ̄ey

(
sin(L̄) +

sin(L̄) + ēy

W̄

)
Denote

z̄ =

(
x̄
λ̄

)
z̄(0)→ z̄(tf ) via ∀t ∈ [0, tf ], ˙̄z(t) =

(
∂H
∂λ (x̄(t), λ̄(t), ᾱ(t), ¯φ(t))

−∂H∂x (x̄(t), λ̄(t), ᾱ(t), ¯φ(t))

)
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We get a 2 point boundary-value problem in which the unknown variables
necessary to get the optimal trajectory are :

X =
(
λP(0), λex (0), λey (0), λm(0), λL(0), t1, t2, tf

)
where t1, t2 are the two times of commutation.
Using a shooting method (written in FORTRAN) with two bigs routines:

• one which lets us to integrate the dynamical system

• the other which is a Newton method for �nding a zero of a function

and with the assumptions : Only 2 commutations and transfer in less
than one lap

• as if the time tf was bounded

• most of orbit transfers are made thanks 2 impulses
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Principle of the shooting method:

1. we choose initialization for λ(0), t1, t2, tf

2. z(0) →︸︷︷︸
α=Tmax

z(t1) →︸︷︷︸
α=0

z(t2) →︸︷︷︸
α=Tmax

z(tf )

3. we compute the function whose we want a zero :

F (X ) =



P(tf )− Pf

ex(tf )− e1x
ey (tf )− e1y
λL(tf )

λm(tf )− 1
Φ(t1)
Φ(t2)
H(tf )


4. we search a zero of F (Newton method)
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The shooting method is very fast and converges precisely but :

• Due to Newton's method, we need a precise initialization

• It is not easy to �nd a good initialization

• Not exactly the same results as in an article of Derek Lawden

called �Impulsive transfer between elliptical orbits�
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Ideas for a new shooting method :

• the trajectory on the transfer's ellipse seems more stable

• we can use the Lawden's results to �nd the optimal transfer ellipse
and then initialize a new shooting method

Remark

The trajectory makes us think to the Turnpike property because it's made
of three pieces (in the case of 2 impulses)
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Optimal control problem (OCPT )
For T > 0 �xed, �nd uT ∈ L∞(0,T ,Rm) such that

min

∫ T

0

f 0
(
x(t), u(t)

)
dt

ẋ(t) = f
(
x(t), u(t)

)
R(x(0), x(T )) = 0

Static optimal control problem

min
(x,u)∈Rn×Rm

f 0(x , u)

f (x , u) = 0

Turnpike Property :

The solution of an optimal control problem in large time should spend
most of its time near a steady-state (solution of the static optimal
control problem)
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1st Idea: Consider the Lawden's Problem

Advantages :

• solution easy to �nd (using AMPL+IpOpt)

• gives the same results that Lawden describes

Cons :

• not the same variables as our problem

• it doesn't give all the state and adjoint state

We need to �nd a good static problem to �nd good initializations
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2nd Idea : New Optimal transfer problem

let Lf > 0 free Tmax > 0,
�nd α ∈ L∞([L0, Lf ]→ [0,Tmax ]), φ ∈ L∞(R→ R) tel que:

min
α,φ
−m(Lf ) = −m0 + β

∫ Lf

L0

√
P

µ

P

W 2
α

P ′ =
1

µm

2P3

W 3
α sin(φ)

e′x =
1

µm

P2

W 2
α
(

sin(L) cos(φ) +
(

cos(L) +
cos(L) + ex

W

)
sin(φ)

)
e′y =

1

µm

P2

W 2
α
(
− cos(L) cos(φ) +

(
sin(L) +

sin(L) + ey
W

)
sin(φ)

)
m′ = −β

√
P

µ

P

W 2
α

x(0) = (P0, e0x , e0y ,m0), x(Lf ) = (P1, e1x , e1y ,−)
where P ′ = dP

dL
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Computing the associated static problem we have the following di�culty
:

• all (P̃, ẽx , ẽy , m̃) with α = 0 and φ ∈ L∞(R,R) are solutions.

• we lose the choice of the possibly best transfert orbit

Idea: consider the previous optimal control problem with a control
α = α1δL1 + α2δL2 with α1, α2 ∈ L∞([L0, Lf ], [0,Tmax ])
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Let us write the optimal control static problem :

max
α1,α2,φ1,φ2,L1,L2,P,ex ,ey ,m2

m1

P − P0 = 1

µm0

2P3
0

W 3
0
α1 sin(φ1)

ex − e0x = 1

µm0

P2
1

W 2
0

(
sin(L1)α1 cos(φ1) +

(
cos(L1) + cos(L1)+e0x

W0

)
α1 sin(φ1)

)
ey − e0y = 1

µm0

P2
0

W 2
0

(
− cos(L1)α1 cos(φ1) +

(
sin(L1) +

sin(L1)+e0y
W0

)
α1 sin(φ1)

)
m −m0 = −β

√
P0
µ

P0

W 2
0
α1

P1 − P = 1

µm1

2P3
1

W 3
1
α2 sin(φ2)

e1x − ex = 1

µm1

P2
1

W 2
1

(
sin(L2)α2 cos(φ2) +

(
cos(L2) + cos(L2)+e1x

W1

)
α2 sin(φ2)

)
e1y − ey = 1

µm1

P2
1

W 2
1

(
− cos(L2)α2 cos(φ2) +

(
sin(L2) +

sin(L2)+e1y
W1

)
α2 sin(φ2)

)
m1 −m = −β

√
P1
µ

P1

W 2
1
α2
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From this problem we can have (by resolution with AMPL+IpOpt):

• the intermediate state (P, ex , ey ,m)

• the �nal mass m1

• the longitude of the two impulses L1 and L2

• the intermediate state adjoint (AMPL can give us the Lagrange
multipliers for the 8 equations)



Context Classic shooting method Resolution inspired of Turnpike property

So this time : x = (P, ex , ey ,m) and λ = (λP , λex , λey , λm)
By application of Pontryagin's principle we get :

• α and φ

• the extremal dynamic system

• transversality conditions

Always denote z =

(
x
λ

)
We can now write the new shooting method:

Unknown variables are :

X =
(
P(Lf /2), ex(Lf /2), ey (Lf /2),m(Lf /2)...

λP(Lf /2), λex (Lf /2), λey (Lf /2), λm(Lf /2)...

L0, L1, L2, Lf
)
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Principle of the new shooting method:

1. we choose initialization for X

2. z(L0) ←︸︷︷︸
α=Tmax

z(L1) ←︸︷︷︸
α=0

z(Lf

2
) →︸︷︷︸
α=0

z(L2) →︸︷︷︸
α=Tmax

z(Lf )

3. we compute the function whose we want a zero :

F (X ) =



P(L0)− P0

ex(L0)− e0x
ey (L0)− e0y
m(L0)−m0

P(Lf )− Pf

ex(Lf )− e1x
ey (Lf )− e1y
λm(Lf )− 1

Φ(L1)
Φ(L2)
H(L0)
H(Lf )


4. we search a zero of F
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THANK YOU FOR YOUR ATTENTION
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