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Motivations

• Controllability of PDE has been widely investigated in the past
decades;

• On the other hand, on many PDE models describing biological
or physical phenomena some constraints are imposed.

Our goal: obtain some Controllability results under state and/or
control constraints.
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Existing results for the heat equation

This constrained Controllability issue for the heat equation has
already been investigated in:
J. Lohéac, E. Trélat and E. Zuazua
Minimal controllability time for the heat equation under unilateral
state or control constraints
Mathematical Models and Methods in Applied Sciences, Vol. 27
no. 09 (2017), pp. 1587− 1644..
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Existing results for the heat equation

Theorem (Lohéac, Trélat and Zuazua)

Let y0 ∈ L2(Ω) be an initial datum and y1 be a steady state.

Assume Tr(y1) �∂Ω≥ ν > 0. Then, in time large, we can drive the

system:{
yt −∆y = 0 in (0,T )× Ω

y = u on (0,T )× ∂Ω.

from y0 to y1 by means of control u satisfying the control

constraint:

u ≥ 0 a.e. (0,T )× ∂Ω.

If y0 ≥ 0 a.e. in Ω, y ful�lls the state constraint:

y ≥ 0 a.e. (0,T )× Ω.
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Goal of the talk

1. Generalize this result to a semilinear case:

yt −∆y + f (y) = 0 in (0,T )× Ω;

2. Check how much Constrained controllability relies on the
dissipative nature of the equation.
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Outline of the talk
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Dissipative case

Theorem
Assume c ∈ L∞(Ω) such that c > −λ1. Let y0 ∈ L2(Ω) be an

initial datum and y1 be a steady state. Suppose

Tr(y1) �∂Ω≥ ν > 0. Then, in time large, we can steer the system:{
yt −∆y + c(x)y = 0 in (0,T )× Ω

y = u on (0,T )× ∂Ω.

from y0 to y1 by a control u satisfying the control constraint:

u ≥ 0 a.e. (0,T )× ∂Ω.

If y0 ≥ 0 a.e. on Ω, then y ful�lls the state constraint:

y ≥ 0 a.e. (0,T )× Ω.
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Idea of the proof-Dissipative Case

We introduce the state variable z = y − y1 reducing ourselves to
prove that, in time large, we can drive the system from y0 − y1 to 0
by a control v ≥ −Tr(y1).
Then, the control u = v + Tr(y1) will drive the system from y0 to
y1 and

u = v + Tr(y1) ≥ −Tr(y1) + Tr(y1) = 0.
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Idea of the proof-Dissipative Case

Take c ∈ L∞(Ω). By the regularizing e�ect of the heat equation
and extension-restriction arguments, we recognize that, for any
initial datum z0 ∈ L2, we can �nd a control w driving the system{
zt −∆z + c(x)z = 0 in (0, τ)× Ω

z = w on (0, τ)× ∂Ω

from z0 to 0 in time τ and such that:

‖w‖L∞ ≤ C (τ)‖z0‖L2 .
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Idea of the proof-Dissipative Case
We determine the control v as follows:

1. we let the system evolve for a long time interval [0,T − τ ].
Since the system dissipative, we have:

‖z(T − τ)‖L2 ≤ e−λ(T−τ)‖y0 − y1‖L2 ,

where λ is the �rst eigenvalue of −∆y + cy .

2. we steer the system from z(T − τ) to 0 in the small time
interval [T − τ,T ] by a control w ∈ L∞ such that:

‖w‖L∞ ≤ C (τ)‖z(T − τ)‖L2 ≤ C (τ)e−λ(T−τ)‖y0 − y1‖L2 .

Then, v := wχ[T−τ,T ] drives our control system from y0 − y1 to 0
and, if T is large enough,

‖v‖L∞ ≤ C (τ)e−λ(T−τ)‖y0 − y1‖L2 < ν.

This implies that v ≥ −ν ≥ −Tr(y1) as required.
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General Case

Theorem
Let c ∈ L∞(Ω) with no sign assumptions. We take two steady

states y0 and y1 such that:

Tr(yi ) �∂Ω≥ ν > 0.

Then, in time large, we can steer the system:{
yt −∆y + c(x)y = 0 in (0,T )× Ω

y = u on (0,T )× ∂Ω

from y0 to y1 by means of a control satisfying the control

constraint:

u ≥ 0 a.e. (0,T )× ∂Ω.
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ε-Controllability

We know that for any z0 ∈ L2 we can �nd a control w steering the
control system from z0 to 0 in time 1 and

‖w‖L∞ ≤ C (1)‖z0‖L2 .

Then, for any ε > 0, there exists δ > 0 such that:

‖z0‖L2 < δ ⇒ ‖w‖L∞ < ε.

Take ε = ν. If ‖y1 − y0‖L2 < δ, then, we are able to �nd a control
v ∈ L∞ of size ‖v‖L∞ < ν such that u := v + Tr(y1) drives the
system from y0 to y1 in time 1. Then, u ≥ −ν + ν = 0.
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The stair-case method: from local to global

We introduce the following continuous arc joining y0 and y1 in the
set of steady states.

γ(s) := (1− s)y0 + sy1.
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The stair case method: from local to global

Then, we link y0 by y1 by a step by step procedure joining the
steady states along γ at distance less then δ.

t0

y

iterative procedure

1 2 3 4 5

y

y0
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Dissipative case

We consider the control system:
yt −∆y + f (y) = 0 in (0,T )× Ω

y = u on (0,T )× ∂Ω

y(0) = y0. inΩ

We assume f is a C 1 nondecreasing function such that f (0) = 0.
Then, thanks to the nondecreasing character of f , for any
y0 ∈ L2(Ω) and u ∈ L2((0,T )× ∂Ω), there exists a unique solution

y ∈ L2((0,T )× Ω) ∩ C 0([0,T ],H−1(Ω)).
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Dissipative case

Theorem
Let y0 ∈ L2(Ω) be an initial datum and y1 a bounded steady state

such that Tr(y1) �∂Ω≥ ν > 0 for a constant ν > 0. Then, if T is

large enough, we can drive the system{
yt −∆y + f (y) = 0 in (0,T )× Ω

y = u on (0,T )× ∂Ω

from y0 to y1 by means of a control u satisfying the control

constraint:

u ≥ 0 a.e. (0,T )× ∂Ω.

If y0 ≥ 0 a.e. on Ω, y ful�lls the state constraint:

y ≥ 0 a.e. (0,T )× Ω.
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Idea of the proof-Dissipative Case

We observe that z = y − y1 satis�es:
zt −∆z + f (z + y1)− f (y1) = 0 in (0,T )× Ω

z = u − Tr(y1) on (0,T )× ∂Ω

z(0) = y0 − y1. inΩ.

We have to prove that, in time large, we can drive the above
system from y0 − y1 to 0 by means of a control v ≥ −Tr(y1).
Then, u = v + Tr(y1) ≥ 0 will be the desired control.
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Idea of the proof-Dissipative Case
Let τ > 0 be �xed and T > τ time horizon.

1. First of all, we enjoy the dissipative nature of the system and
its regularizing e�ect for a long time. Indeed, for any δ > 0,
taking the control to be zero in [0,T − τ ], we have that the
unique solution z to:
zt −∆z + f (z + y1)− f (y1) = 0 in (0,T − τ)× Ω

z = 0 on (0,T − τ)× ∂Ω

z(0) = y0 − y1 inΩ.

is such that z(T − τ, ·) ∈ L∞ and

‖z(T − τ, ·)‖L∞ ≤ δ,

whenever T is large enough;

2. to conclude, we check if we can drive z(T − τ, ·) to 0 by a
control w of size ‖w‖L∞ < ν.
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Idea of the proof-Dissipative Case

We have then to check the local null controllability result for the
above system. We go by step. First of all, we prove a null
controllability Theorem for the case f globally Lipschitz and
distributed control, employing the approach of:
E. Fernández-Cara and E. Zuazua
Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol.
17 no. 5 (2000), pp. 583− 616.
Basically, for any η ∈ L∞((0,T )×Ω), we consider the linear system{
zt −∆z + f (η+y1)−f (y1)

η−y1 z = uχω in (0, τ)× Ω

z = 0 on (0, τ)× ∂Ω.

and we apply Kakutani's �xed point Theorem to prove the desired
result.



Intro The linear case The semilinear case Work in progress

Idea of the proof-Dissipative Case

By extension-restriction arguments, we get the same result for the
case of boundary control and f globally Lipschitz. Finally, this
yields the following local null controllability result in case f is only
locally Lipschitz.

Proposition

There exists δ > 0 such that, for any initial datum z0 ∈ L∞ such

that:

‖z0‖L∞ ≤ δ,

there exists a control v ∈ L∞((0,T )× ∂Ω) such that:

• v drives the system from z0 to 0;

•
‖v‖L∞ ≤ C ‖z0‖L∞ .
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General case

We consider the control system:
yt −∆y + f (y) = 0 in (0,T )× Ω

y = u on (0,T )× ∂Ω

y(0) = y0. inΩ

where f is C 1 function such that f (0) = 0. We have then removed

the monotonicity assumption on f . Then, for an initial datum
y0 ∈ L∞(Ω) and a boundary control u ∈ L∞((0,T )× ∂Ω), the
above system admits solution locally in time. Blow up phenomena
in �nite time may occur.
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General case

Theorem
Let S be the set of bounded steady states endowed with the

uniform topology. Then we take two steady states y0 and y1
connected in S by a continuous arc γ such that:

Tr(γ(s)) �∂Ω≥ ν > 0 ∀s ∈ [0, 1].

Then, in time large, we can steer the system{
yt −∆y + f (y) = 0 in (0,T )× Ω

y = u. on (0,T )× ∂Ω.

from y0 to y1 by a control u ∈ L∞ satisfying the control

constraint:

u ≥ 0 a.e. (0,T )× ∂Ω.
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Idea of the proof-General case

By the local controllability, for any ε > 0 there exists δ > 0 such
that for any pair of bounded steady states y0 and y1 such that

‖y1 − y0‖L∞ < δ,

we can �nd a control u = v + Tr(y1) ∈ L∞ driving the system from
y0 to y1 in time 1. Moreover, we have:

‖v‖L∞ < ε.

If ε = ν. Then, u = v + Tr(y1) ≥ −ν + ν = 0.
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Idea of the proof-General case

We connect y0 and y1 stepwise joining steady states along γ at
distance less than δ.

t0

y

iterative procedure

1 2 3 4 5

y

y0
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Work in progress

Our purpose is to use the same techniques to study controllability
under constraints for control systems governed by:

yt − div(A∇y) + (b,∇y) + cy = 0

and
yt − div(A∇y) + f (x , y ,∇y) = 0.

In these cases some controllability results with controls in L∞ have
been prove in:
A. Doubova, E. Fernández-Cara, M. González-Burgos and E.
Zuazua
SIAM Journal on Control and Optimization, Vol. 41 no. 3 (2002),
pp. 798− 819.
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Thank you for the attention!!!
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