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Preliminaries on quantum graphs

Definition

A discrete graph G := (V ,E , ∂) consists of

V = {vi} a finite or countably infinite set of vertices

E = {ej} a set of adjacent edges at the vertices of length lj ∈ (0,∞]
(lj <∞↔ ej internal , lj =∞↔ ejexternal)

∂ : E → V × V an orientation map which associates to each internal
ej edge the pair (∂−ej , ∂+ej) of its initial and terminal vertex, and to
an external edge its initial vertex only.

E 3 ej ←→ [0, lj ] =: Ij

A metric graph is a discrete graph equipped with a natural metric: the
distance of two points is the length of the shortest path in G.
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Examples of metric graphs

Star-shaped graph, G
Graph with internal and external edges

Compact graph Graph with cycle
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Function spaces

In the sequel, we consider G=star-graph, with n ∈ N∗ edges of infinite
length.

Given 1 ≤ p ≤ ∞, one can define Lp(G) as the set of functions
f = (fj)j=1,n, whose components fj are elements of Lp(Ij)

||f ||pLp(G) =
n∑

j=1

||fj ||pLp(Ij )
for 1 ≤ p <∞, ||f ||L∞(G) = sup

1≤j≤n
||fj ||L∞(Ij ),

and the Sobolev space

H2(G) =
n⊕

j=1

H2(Ij), ||f ||2H2(G) =
n∑

j=1

||fj ||2H2(Ij )
,

where Ij = [0,∞).
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The LSE on star-graph, G

Let us consider the linear Schrödinger equation{
iut(t, x) + ∆xu(t, x) = 0, t 6= 0, x ∈ G
u(0, x) = u0(x), x ∈ G

,

where ut represents the time derivative of u, and the Laplacian
∆x =: ∆(A,B) with domain

D(∆(A,B)) = {u ∈ H2(G) : Au + Bu′ = 0},

acts as the second derivative along the edges.

A and B are n × n matrices which express the coupling condition at the
common vertex, and u = (uj(t, 0))j=1,n , u′ = (u′j(t, 0+))j=1,n,
respectively.
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Self-adjoint Laplacians on G

V. Kostrykin and R. Schrader, 2006

Let A,B be n × n matrices. Are equivalent:

(i) ∆(A,B) is self-adjoint

(ii) A and B satisfy:

(H1) (A,B) has maximal rank;

(H2) AB† is self-adjoint.

1

1Laplacians on metric graphs: Eigenvalues, resolvents and semigroups, Quantum
Graphs and Their Applications, Vol. 415
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Examples

Kirchhoff

ψi (0) = ψj(0), i , j = 1, n
∑n

j=1ψ
′
j(0+) = 0

δ

ψi (0) = ψj(0), i , j = 1, n
∑n

j=1ψ
′
j(0+) = αψk(0), α ∈ R

δ′

ψ′i (0+) = ψ′j(0+), i , j = 1, n
∑n

j=1ψj(0) = βψ′k(0+), β ∈ R
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Quantum graphs = metric graph + self-adjoint differential operator

Modeling phenoma such as:

nonlinear electromagnetic pulse propagation in optical fibers

electrical signal propagation in the nervous system, etc.

G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs,
Mathematical Surveys and Monographs, Vol. 186, 2013

The modelization depends on the real network, where each edge has a thickness,
but usually idealizations (metric graphs) of these graphs are considered.
The convergence of these so-called graph-like spaces to metric graphs (with
0-thickness limit) is analyzed in:

O. Post, Spectral Analysis on Graph-like Spaces, Lecture Notes in Mathematics,
Springer, Vol. 2039, 2012

P.Exner, O. Post, ”A general approximation of quantum graph vertex
couplings by scaled Schrödinger operators on thin branched manifolds,
Communications in Mathematical Physics 322.1: 207-227, 2013
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Definition 1

A and B are real matrices if there exist Ã, B̃ ∈ Mn×n(R) and an invertible
matrix C such that A = CÃ and B = CB̃.

Definition 2

The exponent pair (q, r) is σ−admissible if q, r ≥ 2, (q, r , σ) 6= (2,∞, 1)
and

1

q
+
σ

r
≤ σ

2
.

If equality holds, we say that (q, r) is sharp σ−admissible.

(q, r) sharp 1
2
− admissible

r ∈ [2,∞], q =
4r

r − 2
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Main results

Assume A and B to be real matrices satisfying (H1) and (H2).

Theorem 1. (Dispersive estimates)

(1.1)
∥∥∥e it∆Pac(−∆)

∥∥∥
Lp(G)→Lq(G)

. |t|
1
2−

1
p , t 6= 0, q ≥ 2,

1

p
+

1

q
= 1.

Theorem 2. (Strichartz estimates)

(2.1)
∥∥∥e it∆Pac(−∆)u0

∥∥∥
Lq
t (R)Lr

x (G)
.
∥∥u0

∥∥
L2(G)

,

(2.2)
∥∥∥∫

R
e is∆Pac(−∆)F (s, ·)ds

∥∥∥
L2(G)

.
∥∥F∥∥

Lq′
t (R)Lr′

x (G)
,

(2.3)
∥∥∥∫

s<t

e i(t−s)∆Pac(−∆)F (s, ·)ds
∥∥∥
Lq
t (R)Lr

x (G)
. ||F ||

Lq̃′
t (R)Lr̃′

x (G)
,

where Pac (−∆) denotes the projection onto the absolutely continuous spectral subspace of
L2(G) associated to −∆(A,B) and (q, r), (q̃, r̃) are sharp 1

2
−admissible exponent pairs.
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Application

(H3) AB† does not have any positive eigenvalues.

Under (H1)− (H3), we have the following result.

Theorem 3. Well-posedness of the NLS

For every u0 ∈ L2(G), there exists a unique mild solution

u ∈ C (R, L2(G)) ∩
(q,r)

Lqloc(R, Lr (G))

of the nonlinear Schrödinger equation{
iut(t, x) + ∆xu(t, x) + λ|u|p−1u = 0, t 6= 0, x ∈ G
u(0, x) = u0(x), x ∈ G

,

where p ∈ (1, 5), λ ∈ R.

Moreover, the L2(G)-norm of u is preserved along time

‖u(t)‖L2(G) = ‖u0‖L2(G).
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The Resolvent

V. Kostryin, R. Schrader

The resolvent Rk := (−∆(A,B)− k2)−1, for k2 ∈ C \ σ(−∆(A,B)) is the
integral operator with the n × n matrix-valued integral kernel r(x , y , k),
Im k > 0, admitting the representation

r(x , y , k) = r (0)(x , y , k) +
i

2k
φ(x , k)G (k ,A,B)φ(y , k),

where

[r (0)(x , y , k)]j ,j ′ =
i

2k
δj ,j ′e

ik|xj−yj′ |, xj ∈ Ij , yj ′ ∈ Ij ′

φ(x , k) = diag{e ikxj}j , φ(y , k) = diag{e ikyj}j
G (k,A,B) = −(A + ikB)−1(A− ikB).

2

2Laplacians on metric graphs: Eigenvalues, resolvents and semigroups, Quantum
Graphs and Their Applications, Vol. 415, 2006
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Sketch of the proof of Thm 1 (Dispersive estimates)

Step 1. σac(−∆(A,B)) = [0,∞).

Step 2. The solution via the resolvent.

Notation: H := −∆(A,B), Pac := Pac(H).

Rku0(x) = (H − k2)−1u0(x) =

∫
G
r̃(x , y , k)u0(y)dy ,

where

r̃(x , y , k) =

{
r(x , y , k), Im k > 0

r(x , y , k), Im k < 0
.

We point out that kr̃(x , y , k) is well-defined, analytic in k and bounded on
a region containing the k-real axis.
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Let u0 ∈ C∞0 (G).

Since σac(H) = [0,∞), together with the Spectral Theorem 3 of
representation of bounded functions of unbounded self-adjoints operators,

e−itHPacu0(x) = lim
ε→0

1

πi

∫
G
u0(y)

∫
R
e−(it+ε)k2

k r̃(x , y , k) dk dy .

and the limit is in L2(G).

3Dunford, N., Schwartz, J. T., Bade, W. G., Bartle, R. G., Linear
operators. Part II, Spectral theory: Self adjoint operators in Hilbert space, 1963
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Step 3. L1 → L∞ Dispersive estimates.

(e−itHPacu0(x))j = lim
ε→0

1

πi

n∑
j ′=1

∫
Ij′

∫
R
e−(it+ε)k2

(kr̃(x , y , k))j ,j ′ dk u0j′ (y)dy ,

with

kr̃(x , y , k) =
i

2
diag(e ik|xj−yj |)j +

i

2
diag(e ikxj )j (Gi ,j(k))i ,j diag(e ikyj )j ,

where Gi ,j(k), i , j = 1, n, are elements of

G (k,A,B) = −(A + ikB)−1(A− ikB).
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Lemma (Van Der Corput)

Let φ : [a, b] −→ R be a C k − function and ψ a smooth complex valued
function. Suppose that |φ(k)| ≥ 1 for some k ≥ 1 and all x ∈ [a, b]. If
k = 1, assume in addition that φ′ is monotone. Then, for every λ ∈ R,∣∣∣ ∫ b

a
e iλφ(x)ψ(x)dx

∣∣∣ ≤ ck
1

|λ|
1
k

(
||ψ||L∞ + ||ψ′||L1

)
,

where the constant ck is independent of a, b and φ.

Thus,

||(e−itHPacu0)j ||L∞(Ij ) .
1√
|t|

n∑
j ′=1

(
||Gj ,j ′ ||L∞(R)︸ ︷︷ ︸

<∞

+ ||G ′j ,j ′ ||L1(R)︸ ︷︷ ︸
<∞

)
||u0j′ ||L1(Ij′ )

, j = 1, n

uniformly w.r.t. ε.

4
4E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and

Oscillatory Integrals ,Princeton University Press, 1993
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Step 4. Lp → Lq Dispersive estimates.

Since

||e−itHPacu0||L2((G) ≤ ||u0||L2(G).

By interpolation, for all q ≥ 2

||e−itHPacu0||Lq((G) . |t|
1
2
− 1

p ||u0||Lp(G), t 6= 0,
1

p
+

1

q
= 1

.
which implies the estimate (1.1).

�
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Sketch of the proof of Theorem 2. (Strichartz estimates)

Recall the genereal result of M. Keel and T. Tao under the following
assumptions:

Let (X , dx) be a measure space, H a Hilbert space. Suppose that for each
time t ∈ R, we have an operator U(t) : H → L2(X ) which obeys the
following:

For all t and f ∈ H, we have

||U(t)f ||L2(X ) . ||f ||H

For all t 6= s and all g ∈ L1(X ),

||U(t)U∗(s)g ||L∞(X ) . |t − s|−1/2||g ||L1(X ).
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M. Keel, T. Tao

Then,

||U(t)f ||Lqt Lrx . ||f ||H∥∥∥∫
R
U∗(s)F (s, ·)ds

∥∥∥
H
. ||F ||

Lq
′

t Lr′x∥∥∥∫
s<t

U(t)U∗(s)F (s, ·)ds
∥∥∥
Lqt L

r
x

. ||F ||
Lq̃

′
t Lr̃′x

hold for all q, r such that r ∈ [2,∞] and q = 4r
r−2 , and q̃, r̃ , likewise.a

aEndpoint Strichartz Estimates, American Journal of Mathematics, Vol.
120, p. 955-980, 1998

Taking X = G, H = L2(G) and U(t) = e−itHPac for t ∈ R in the previous
theorem, from the properties of e−itH , Pac and the previously proved
results, consequently follow the estimates (2.1)− (2.3). �
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Application

(H3) AB† does not have any positive eigenvalues.

Under (H1)− (H3), we have the following result.

Theorem 3. Well-posedness of the NLS

For every u0 ∈ L2(G), there exists a unique mild solution

u ∈ C (R, L2(G)) ∩
(q,r)

Lqloc(R, Lr (G))

of the nonlinear Schrödinger equation{
iut(t, x) + ∆xu(t, x) + λ|u|p−1u = 0, t 6= 0, x ∈ G
u(0, x) = u0(x), x ∈ G

,

where p ∈ (1, 5), λ ∈ R.

Moreover, the L2(G)-norm of u is preserved along time

‖u(t)‖L2(G) = ‖u0‖L2(G).
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Sketch of the proof of Theorem 3. (Well-posedness of the NLS)

Standard proof

Step 1. Mild formulation of the solution → fixed point problem.

Step 2. Strichartz estimates → contraction on a space-time ball → local
in time existence and uniqueness

Step 3. Conservation of the L2-norm → global solution.

5

6

5F. Linares, G.Ponce, Introduction to Nonlinear Dispersive Equations, 2009
6T. Cazenave, Semilinear Schrödinger Equations, 2003
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Thank you for your time and kind attention!
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