

EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU

Daniel Riedel

Patrick Maletinsky, Quantum Sensing Group, University of Basel Richard J. Warburton, Nano Optics Group, University of Basel

Enhancement of resonant transitions via coupling to a fully tunable Fabry-Pérot microcavity

DR et al., submitted (2017)

(<u>arXiv:1703.00815</u>)

Quantum Nanophotonics 2017, Benasque

NV center: Optically addressable, highly coherent spin

NV center: Optically addressable, highly coherent spin

Self assembled quantum dots

Warburton, Nat. Mater. 12, 483 (2013)

NV center: Optically addressable, highly coherent spin

Magnetic sensing

Appel et al., New J. Phys. **17**, 112001 (2015) Thiel et al., Nat. Nanotechnol. **11**, 677 (2016)

NV center: Optically addressable, highly coherent spin

Magnetic sensing

Appel et al., New J. Phys. **17**, 112001 (2015) Thiel et al., Nat. Nanotechnol. **11**, 677 (2016)

Optomechanics

Teissier et al., PRL **113**, 020503 (2014) Barfuss et al., Nat. Phys. **11**, 820 (2015)

NV center: Optically addressable, highly coherent spin

Magnetic sensing

Appel et al., New J. Phys. **17**, 112001 (2015) Thiel et al., Nat. Nanotechnol. **11**, 677 (2016)

Optomechanics

Teissier et al., PRL **113**, 020503 (2014) Barfuss et al., Nat. Phys. **11**, 820 (2015)

Quantum information

Long distance spin-spin entanglement

Hensen et al., Nature 526, 682 (2015)

NV center: Optically addressable, highly coherent spin

Magnetic sensing

Appel et al., New J. Phys. **17**, 112001 (2015) Thiel et al., Nat. Nanotechnol. **11**, 677 (2016)

Optomechanics

Teissier et al., PRL **113**, 020503 (2014) Barfuss et al., Nat. Phys. **11**, 820 (2015)

Quantum information

Long distance spin-spin entanglement

Hensen et al., Nature 526, 682 (2015)

 limited by the detection rate of coherent photons (~ mHz)

- Motivation
- NV centres in diamond
- Optical cavities
- Fully tunable Fabry-Pérot microcavity
- Experimental results and analysis
- Summary and Outlook

NV centres in diamond - advantages

@RT

Key features:

- long spin coherence times (> 1 ms)
- nuclear quantum memory (> 1s)
- fast one- and two- qubit gates
- ground state spin control via external fields

Balasubramanian et al., Nat. Mater. 8, 383 (2009)

Maurer et al., Nature 8, 383 (2009)

Fuchs et al., Science 326, 1520 (2009)

NV centres in diamond - advantages

- **Key features:**
- spin-readout via spin-state dependent photoluminescence (PL) intensity
- spin-selective / cycling transitions
- optical lambda-system: requirement for spin-photon entanglement

Togan et al., Nature **466**, 730 (2010)

NV centres in diamond - challenges

Key challenge: light extraction

- 1. small extraction efficiency out of bulk diamond
- 2. long radiative lifetime: ~ 12 ns
- 3. small fraction of PL emission at ZPL (637 nm): ~ 3%

NV centres in diamond - challenges

Key challenge: light extraction

- 1. small extraction efficiency out of bulk diamond
- 2. long radiative lifetime: ~ 12 ns
- 3. small fraction of PL emission at ZPL (637 nm): ~ 3%

→ solve all 3 problems with cavity

$$\gamma_{12} = \frac{2\pi}{\hbar^2} < \vec{p} \cdot \vec{E}_{\text{vac}} >^2 g(\omega)$$

$$\gamma_{12} = \frac{2\pi}{\hbar^2} < \vec{p} \cdot \vec{E}_{\text{vac}} >^2 g(\omega)$$
~ Q

$$\gamma_{12} = \frac{2\pi}{\hbar^2} < \vec{p} \cdot \vec{E}_{\text{vac}} >^2 g(\omega)$$
$$\sim 1 / \text{V} \sim \text{Q}$$

Energy of vacuum fluctuation:

 $\int \varepsilon_0 \varepsilon_R E^2 dV = \hbar \omega / 2$

$$\gamma_{12} = \frac{2\pi}{\hbar^2} < \vec{p} \cdot \vec{E}_{\text{vac}} >^2 g(\omega)$$
$$\sim 1 / \text{V} \sim \text{Q}$$

Relative transition rate enhancement:

Mode volume of vacuum fluctuation:

 $V \sim \mu m^3$

Energy of vacuum fluctuation:

 $\int \varepsilon_0 \varepsilon_R E^2 dV = \hbar \omega / 2$

Diamond cavities

micro-ring resonator

Faraon et al., New J. Phys. **15** 025010 (2013) Faraon et al., Nat. Photon. **5**, 301 (2011)

2D photonic crystal

Faraon et. al, PRL **109**, 033604 (2012) Riedrich-Möller et al., Appl. Phys. Lett. **106**, 221103 (2015)

nanobeam photonic crystal

Hausmann et al., Nano Lett. **13**, 5791 (2013) Burek et al., Nat. Commun. **5**, 5718 (2014) Li et al., Nat. Commun. **6**, 6173 (2015) Sipahigil et. al, Science 354, **847** (2016)

Key result:

• up tp 70-fold enhancement of emission rate

Diamond cavities

micro-ring resonator

Faraon et al., New J. Phys. **15** 025010 (2013) Faraon et al., Nat. Photon. **5**, 301 (2011)

2D photonic crystal

Faraon et. al, PRL **109**, 033604 (2012) Riedrich-Möller et al., Appl. Phys. Lett. **106**, 221103 (2015)

nanobeam photonic crystal

Hausmann et al., Nano Lett. **13**, 5791 (2013) Burek et al., Nat. Commun. **5**, 5718 (2014) Li et al., Nat. Commun. **6**, 6173 (2015) Sipahigil et. al, Science 354, **847** (2016)

Key result:

• up tp 70-fold enhancement of emission rate

Challenges:

- spatial and spectral overlap
- high Q-factors
- efficient outcoupling
- emitter stability

Experiments on quantum dots:

Barbour et al., J. Appl. Phys. **110**, 053107 (2011) Greuter et al., Appl. Phys. Lett. **105**, 121105 (2014) Greuter et al., Phys. Rev. B **92**, 045302 (2015)

Experiments on quantum dots:

Barbour et al., J. Appl. Phys. **110**, 053107 (2011) Greuter et al., Appl. Phys. Lett. **105**, 121105 (2014) Greuter et al., Phys. Rev. B **92**, 045302 (2015)

Advantages of microcavity design:

- minimal diamond processing (low spectral fluctuations)
- well-defined Gaussian output mode
- full *in situ* tunability:
 - resonance wavelength
 - spatial overlap
 - select favourable NV
- small mode volume V
- high Q factor

Experiments on quantum dots:

Barbour et al., J. Appl. Phys. **110**, 053107 (2011) Greuter et al., Appl. Phys. Lett. **105**, 121105 (2014) Greuter et al., Phys. Rev. B **92**, 045302 (2015)

Advantages of microcavity design:

- minimal diamond processing (low spectral fluctuations)
- well-defined Gaussian output mode
- full *in situ* tunability:
 - resonance wavelength
 - spatial overlap
 - select favourable NV
- small mode volume V
- high Q factor

Proof of concept using nanodiamonds:

Albrecht et al., PRL **110**, 243602 (2013) Johnson et al., New J. Phys. **17**, 122003 (2015) Kaupp et al., Phys. Rev. Applied **6**, 054010 (2016)

Integration of a microscopic diamond membrane into microcavity

• surface atomically smooth

high Q factor

• small radius of curvature

small mode volume V

Najer et al., Appl. Phys. Lett. **110**, 011101 (2017)

AFM – phase image

Fabrication of diamond membranes

Commercially available diamond and nitrogen implantation + annealing

Appel et al., Rev. Sci. Instrum. **87**, 063703 (2016) Maletinsky et al., Nat. Nanotechnol. **7**, 320 (2012) DR et al., Phys. Rev. Appl. 2, 064011 (2014)

Photoluminescence excitation measurement

Photoluminescence excitation measurement

Chu et. al, Nano Lett. 14, 1982 (2014)

Photoluminescence excitation measurement

linewidth smaller than ground state spin splitting: 2.87 GHz

Chu et. al, Nano Lett. 14, 1982 (2014)

Analyze cavity mode structure:

- couple green laser
- tune width of air gap L
- record photoluminescence (PL) spectra for different L

PL vs. air gap width L

PL vs. air gap width L

PL vs. air gap width L

Janitz et. al, Phys. Rev. A 92, 043844 (2015)

PL vs. relative detuning ΔL

PL vs. relative detuning ΔL

Clear single emitter signature in photon autocorrelation

PL vs. relative detuning ΔL

C factor: 58500 $\kappa = \omega / Q = 5.06 \cdot 10^{10} \text{ s}^{-1}$

Lifetime NV2: spectral detuning

Lifetime NV2: spectral + spatial detuning

Full *in situ* control of the cavity system

Lifetime NV2: spectral + spatial detuning

Full *in situ* control of the cavity system

 $\gamma_{res} = 158 \cdot 10^6 \, \text{s}^{-1}$ $\gamma_{offres} = 88.2 \cdot 10^6 \, \text{s}^{-1}$ $\Delta \gamma = 69.8 \cdot 10^6 \, \text{s}^{-1}$

 γ_{res} = 158 \cdot 10 6 s $^{\text{-1}}$, γ_{offres} = 88.2 \cdot 10 6 s $^{\text{-1}}$, $\Delta\gamma$ = 69.8 \cdot 10 6 s $^{\text{-1}}$

 γ_{NV} = 79.4 · 10⁶ s⁻¹ (measurement without top mirror)

 γ_{res} = 158 \cdot 10 6 s $^{\text{-1}}$, γ_{offres} = 88.2 \cdot 10 6 s $^{\text{-1}}$, $\Delta\gamma$ = 69.8 \cdot 10 6 s $^{\text{-1}}$

 γ_{NV} = 79.4 · 10⁶ s⁻¹ (measurement without top mirror)

Overall enhancement:

 $F_P = \gamma_{res} / \gamma_{NV} = 2.0$

 γ_{res} = 158 \cdot 10 6 s $^{\text{-1}}$, γ_{offres} = 88.2 \cdot 10 6 s $^{\text{-1}}$, $\Delta\gamma$ = 69.8 \cdot 10 6 s $^{\text{-1}}$

 γ_{NV} = 79.4 · 10⁶ s⁻¹ (measurement without top mirror)

Overall enhancement:

 $F_{\rm P} = \gamma_{\rm res} / \gamma_{\rm NV} = 2.0$

Purcell enhancement of ZPL:

Fraction of ZPL emission in bulk: ~ 3%

$$\gamma_{ZPL} = 2.38 \cdot 10^{6} \, \text{s}^{-1}$$

 $F_{P,ZPL} = \Delta \gamma / \gamma_{ZPL} + 1 = 30.3$

 $\gamma_{res} = 158 \cdot 10^6 \, s^{-1}$, $\gamma_{offres} = 88.2 \cdot 10^6 \, s^{-1}$, $\Delta \gamma = 69.8 \cdot 10^6 \, s^{-1}$

 γ_{NV} = 79.4 · 10⁶ s⁻¹ (measurement without top mirror)

Overall enhancement:

 $F_{\rm P} = \gamma_{\rm res} / \gamma_{\rm NV} = 2.0$

Purcell enhancement of ZPL:

Fraction of ZPL emission in bulk: ~ 3%

$$\gamma_{ZPL} = 2.38 \cdot 10^6 \, \text{s}^{-1}$$

 $F_{P,ZPL} = \Delta \gamma / \gamma_{ZPL} + 1 = 30.3$

Fraction of ZPL emission in cavity:

η = (Δγ + $γ_{ZPL}$) / $γ_{res}$ = 45.7%

before: ~ 3%

Calculation of expected Purcell enhancement

1D-transfer matrix calculation + Gaussian lateral confinement

Calculation of expected Purcell enhancement

1D-transfer matrix calculation + Gaussian lateral confinement

$$\gamma_{NV} = 79.4 \cdot 10^6 \, \text{s}^{-1}$$
 $\kappa = 5.06 \cdot 10^{10} \, \text{s}^{-1}$ $g = 5.97 \cdot 10^9 \, \text{s}^{-1}$

Theoretical Purcell enhancement: $F_P = 4 g^2 / (\kappa \gamma_{NV}) = 35.5$

Outlook

Current experiment:

$$\begin{aligned} \gamma_{\rm NV} &= 79.4 \cdot 10^6 \, {\rm s}^{-1} \\ \kappa &= 5.06 \cdot 10^{10} \, {\rm s}^{-1} \\ g &= 5.97 \cdot 10^9 \, {\rm s}^{-1} \end{aligned}$$

Best air-confined cavity:

g =
$$1.41 \cdot 10^{10}$$
 s⁻¹, κ = 2g
F_{P,air} = 356

Best diamond-confined cavity:

$$g = 2.09 \cdot 10^{10} \text{ s}^{-1}$$
, κ = 2g
F_{P,dia} = 527

Potential enhancement of entanglement rate: 10⁶

Bogdanovic et al., arXiV: 1612.02164

Conclusion and outlook

- improve Q/V enhancement > 500 feasible
- other colour centres in diamond (SiV, GeV), silicon carbide, ...

Neu et. al, New J. Phys **13**, 025012 (2011) Rogers et al. PRL **113**, 263602 (2014) Sipahigil et. al, Science 354, **847** (2016) Siyushev et al., arXiV: 1612.02947 Bhaskar et al., arXiV: 1612.03036 DR et al., PRL **109**, 226402 (2012) Widmann et al., Nat. Mater. **14**, 164 (2015) Christle et al., Nat. Mater. **14**, 160 (2015)

Acknowledgements

Patrick Maletinsky

Uni Saarbrücken

https://quantum-sensing.ch/

EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU

Richard J. Warburton

Linewidth measurements

membrane $d \sim 1 \,\mu m$

"bulk" d ~ 40 μm

Linewidth measurements

Power saturation

Low count rate due to losses:

T = 1 - R - A

(T:= Transmissivity of mirror coating)(R:= Reflectivity of mirror coating)(A:= Absorption and scattering losses)

Transmission of tunable red diode laser: ~ 4%

Ideal transmission: 100%

→ Factor of 25 for lossless mirrors / no scattering, no absorption

Optical cavity - Purcell enhancement

$$\frac{W_{\text{cav}}}{W_{\text{free}}} = F_{\text{P}} = \frac{3}{4\pi^2} \left(\frac{\lambda_{\text{cav}}}{n}\right)^3 \frac{Q}{V_{\text{cav}}}$$

Transition rate for spontaneous emission:

$$W_{12} = \frac{2\pi}{\hbar^2} |M_{12}|^2 g(\omega)$$

Transition matrix element:

$$|M_{12}|^2 = <\vec{p}\cdot\vec{E}_{\rm vac}>^2$$

Photon density of states:

$$g_{\text{free}}(\omega) = \frac{\omega^2 V}{\pi^2 c^3}$$
$$g_{\text{cav}}(\omega) = \frac{2}{\pi \Delta \omega} \frac{\Delta \omega^2}{4(\omega - \omega_{\text{c}})^2 + \Delta \omega^2}$$

Increased DOS - High Q Confined E_{vac} - Small V

Vibronic structure of the NV center

Different equilibrium positions in the ground and excited states (*ab initio* calculations)

Ν

V

C

Ma et al. 2010 PRB Gali et al. 2011 NJP Zhang et al. 2011 PRB Abtew et al. 2011 PRL Toyli et al. 2012 PRX

Strain effects at low temperatures

High transverse strain:

Two S=1 orbital branches

Linearly polarized emission, spin conserving in the limit of high strain

> Significant mixing between spin states in lower branch

Tamarat et al. 2008 NJP

2

 $\bullet S_z$

(NV3)

8

3

(ii)

Ż

Upper branch

Lower branch

Electric field

 $(MV m^{-1})$

6

Results

Distributed Bragg Reflector (DBR) R > 99.99% @ 637nm

Mode structure:

- Two hybridized cavites:
 - air modes
 - diamond modes
 - From simulation:
 - Diamond thickness
 - > Width airgap
 - Vacuum field at NV
 - Higher order mode spacing
 - Radius of curved mirror

$$\gamma_{res}$$
 = 158 MHz, γ_{offres} = 88 MHz, $\Delta \gamma$ = 70 MHz

Transition rate without top mirror:

 γ_0 = 78.4 MHz

Fraction of ZPL emission:

$$\gamma_{ZPL} = \zeta \cdot \gamma_0, \text{ with } \zeta = 2\% \dots 5\%$$
$$\Delta \gamma = F_P \cdot \gamma_{ZPL} = F_P \cdot \zeta \cdot \gamma_0$$
$$\zeta = \Delta \gamma / (F_P \cdot \gamma_0) = 2.2\%$$

ZPL enhancement: ~ 40

