The frustrated Heisenberg model on the honeycomb lattice

Federico Becca

CNR IOM-DEMOCRITOS and International School for Advanced Studies (SISSA)

Entanglement in Strongly Correlated Systems

F. Ferrari (SISSA)

[A. di Ciolo (now in Salerno) and J. Carrasquilla (now at d-wave)]

Sar

< ロト < 同ト < ヨト < ヨト

2 Bosonic wave functions for ordered (spiral) states

Fermionic resonating-valence bond wave functions

590

・ロト ・ 日 ト ・ モ ト ・ モ ト

Can quantum fluctuations prevent magnetic order down to T = 0?

 Many theoretical suggestions since P.W. Anderson (1973) Anderson, Mater. Res. Bull. 8, 153 (1973) Fazekas and Anderson, Phil. Mag. 30, 423 (1974)

"Resonating valence-bond" (quantum spin liquid) states Idea: the best state for two spin-1/2 spins is a valence bond (a spin singlet):

$$|VB\rangle_{\mathbf{R},\mathbf{R}'} = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{\mathbf{R}}|\downarrow\rangle_{\mathbf{R}'} - |\downarrow\rangle_{\mathbf{R}}|\uparrow\rangle_{\mathbf{R}'}\right)$$

Every spin of the lattice is coupled to a partner Then, take a superposition of different valence bond configurations

The frustrated S = 1/2 Heisenberg model on the honeycomb lattice

Bravais vectors: $\mathbf{a} = (1,0)$ and $\mathbf{b} = (-1/2,\sqrt{3}/2)$

$$\mathcal{H} = J_1 \sum_{\langle i,j
angle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,k
angle
angle} \mathbf{S}_i \cdot \mathbf{S}_k$$

イロト イポト イヨト イヨ

Classical and semi-classical approaches

E. Rastelli, A. Tassi, and L. Reatto, Physica B 97, 1 (1979)

J.B. Fouet, P. Sindzingre, and C. Lhuillier, Eur. Phys. J. B 20, 241 (2001)

A. Mulder et al., Phys. Rev. B 81, 214419 (2010)

Quantum spin liquid (gapped) or dimer/plaquette order?

ED: A.F. Albuquerque et al., Phys. Rev. B 84, 024406 (2011)

VMC: B.K. Clark, D.A. Abanin, and S.L. Sondhi, Phys. Rev. Lett. 107, 087204 (2011)

CC and ED: D.J.J. Farnell et al. Phys. Rev. B 84, 012403 (2011)

fRG: J. Reuther, D.A. Abanin, and R. Thomale, Phys. Rev. B 84, 014417 (2011)

Series exp: J. Oitmaa and R.R.P. Singh, Phys. Rev. B 84, 094424 (2011)

More recent DMRG calculations suggested a plaquette order

- Z. Zhu, D.A. Huse, and S.R. White, Phys. Rev. Lett. 110, 127205 (2013)
- R. Ganesh, J. van den Brink, and S. Nishimoto, Phys. Rev. Lett. 110, 127203 (2013)
- S.-S. Gong et al., Phys. Rev. B 88, 165138 (2013)

Federico Becca (CNR and SISSA)

Previous ED and VMC results

A.F. Albuquerque et al., Phys. Rev. B 84, 024406 (2011)

B.K. Clark, D.A. Abanin, and S.L. Sondhi, Phys. Rev. Lett. 107, 087204 (2011)

Federico Becca (CNR and SISSA)

Benasque 5 / 32

→ 同 ▶ → 国 ▶

Previous DMRG results

Z. Zhu, D.A. Huse, and S.R. White, Phys. Rev. Lett. 110, 127205 (2013)

S.-S. Gong et al., Phys. Rev. B 88, 165138 (2013)

・ロト ・ 同ト ・ ヨト

Previous DMRG results

R. Ganesh, J. van den Brink, and S. Nishimoto, Phys. Rev. Lett. 110, 127203 (2013)

990

The classical phase diagram (I)

- On sublattice \mathcal{A} : $\mathbf{S}_{i} = S \left[\cos(\mathbf{Q} \cdot \mathbf{R}_{i}), \sin(\mathbf{Q} \cdot \mathbf{R}_{i}), 0 \right]$ On sublattice \mathcal{B} : $\mathbf{S}_{i} = -S \left[\cos(\mathbf{Q} \cdot \mathbf{R}_{i} + \eta), \sin(\mathbf{Q} \cdot \mathbf{R}_{i} + \eta), 0 \right]$
- The Classical energy (per spin) for a generic coplanar spin wave is given by:

$$E_{\rm cl} = -\frac{J_1 S^2}{2} \Big[\cos \eta + \cos(\eta - Q_b) + \cos(\eta - Q_a - Q_b) \Big] + J_2 S^2 \Big[\cos Q_a + \cos Q_b + \cos(Q_a + Q_b) \Big]$$

where $Q_a = \mathbf{Q} \cdot \mathbf{a} = Q_x$ and $Q_b = \mathbf{Q} \cdot \mathbf{b} = -Q_x/2 + \sqrt{3}Q_y/2$

• The minimization of *E*_{cl} gives:

$$\cos Q_a^* + \cos Q_b^* + \cos(Q_a^* + Q_b^*) = \frac{1}{2} \left[\left(\frac{J_1}{2J_2} \right)^2 - 3 \right]$$

$$\sin \eta^* = \frac{2J_2}{J_1} \left[\sin Q_b^* + \sin(Q_a^* + Q_b^*) \right]$$
$$\cos \eta^* = \frac{2J_2}{J_1} \left[1 + \cos Q_b^* + \cos(Q_a^* + Q_b^*) \right]$$

Federico Becca (CNR and SISSA)

nar

<ロト < 回 > < 注 > < 注 > … 注

The classical phase diagram (II)

- The AF $\mathbf{Q} = (0,0)$ Néel state is stable for $J_2/J_1 < 1/6$
- \bullet Degenerate spiral (type I) states for $1/6 < J_2/J_1 < 1/2$
- (For $J_2/J_1 = 1/2$, collinear states are present)
- Degenerate spiral (type II) states for $J_2/J_1 > 1/2$

Examples of important magnetic orderings

Federico Becca (CNR and SISSA)

Honeycomb lattice

Э Benasque 10 / 32

990

(日) (四) (注) (注)

Holstein-Primakoff spin wave theory at the leading order in 1/S

• Order by disorder selection: six spiral wave-vectors lying along the classical manifold (wave-vectors along particular high-symmetry directions)

• Quantum fluctuations can melt the spiral order in a wide range of J_2/J_1

A. Mulder et al., Phys. Rev. B 81, 214419 (2010)

naa

(日)

Going beyond spin waves: the Jastrow wave functions

• The variational states containing quantum fluctuations are defined by:

$$|\Psi
angle = \mathcal{J}_z \mathcal{P}_{S^z_{ ext{tot}}=0}| ext{Cl}
angle$$

 |Cl> is a classical state where each spin points in a given direction in the XY plane It is described by a wave vector Q and a phase shift η:

$$|\mathrm{Cl}\rangle = \prod_{i} \left(|\downarrow\rangle_{i} + e^{\imath (\mathbf{Q} \cdot \mathbf{R}_{i} + \eta_{i})} |\uparrow\rangle_{i} \right) = \prod_{i} e^{\imath (\mathbf{Q} \cdot \mathbf{R}_{i} + \eta_{i})(S_{i}^{z} + 1/2)} \left(|\downarrow\rangle_{i} + |\uparrow\rangle_{i} \right)$$

• Quantum fluctuations are generated by the Jastrow factor \mathcal{J}_z describes out-of-plane fluctuations

$$\mathcal{J}_z = \exp\left(rac{1}{2}\sum_{ij}\mathsf{v}_{ij}S_i^zS_j^z
ight)$$

E. Manousakis, Rev. Mod. Phys. 63, 1 (1991)

Federico Becca (CNR and SISSA)

イロト イヨト イヨト

Results for the bosonic Jastrow states

• Results for the 18×18 cluster (Only a finite number of **Q** vectors are available)

A. Di Ciolo, J. Carrasquilla, F. Becca, M. Rigol, and V. Galitski, Phys. Rev. B 89, 094413 (2014)

nar

・ロト ・ 同ト ・ ヨト

Fermionic representation of a spin-1/2

• A faithful representation of spin-1/2 is given by:

$$\begin{split} S_{i}^{z} &= \frac{1}{2} \left(c_{i,\uparrow}^{\dagger} c_{i,\uparrow} - c_{i,\downarrow}^{\dagger} c_{i,\downarrow} \right) & \begin{cases} c_{i,\alpha}, c_{j,\beta}^{\dagger} \} = \delta_{ij} \delta_{\alpha\beta} \\ \{c_{i,\alpha}, c_{j,\beta} \} = 0 \end{cases} \\ S_{i}^{+} &= c_{i,\uparrow}^{\dagger} c_{i,\downarrow} & c_{i,\uparrow}^{\dagger} (\text{or } c_{i,\downarrow}^{\dagger}) \text{ changes } S_{i}^{z} \text{ by } 1/2 (\text{or } -1/2) \\ \text{and creates a "spinon"} \end{cases}$$

• For a model with one spin per site, we must impose the constraints:

$$c_{i,\uparrow}^{\dagger}c_{i,\uparrow}+c_{i,\downarrow}^{\dagger}c_{i,\downarrow}=1$$

• There is a huge redundancy, SU(2) local "gauge" transformations: $c_{j,\uparrow} \rightarrow a_{11}c_{j,\uparrow} + a_{21}c_{j,\downarrow}^{\dagger}$ $c_{j,\downarrow}^{\dagger} \rightarrow a_{12}c_{j,\uparrow} + a_{22}c_{j,\downarrow}^{\dagger}$

Affleck, Zou, Hsu, and Anderson, Phys. Rev. B 38, 745 (1988)

▲日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Whitout breaking the SU(2) spin symmetry, the mean-field Hamiltonian is

$$\mathcal{H}_{\rm MF} = \sum_{ij} \chi_{ij} (c^{\dagger}_{j,\uparrow} c_{i,\uparrow} + c^{\dagger}_{j,\downarrow} c_{i,\downarrow}) + \Delta_{ij} (c^{\dagger}_{j,\uparrow} c^{\dagger}_{i,\downarrow} + c^{\dagger}_{i,\downarrow} c^{\dagger}_{j,\downarrow}) + h.c.$$

Magnetic order can be included breaking the SU(2) symmetry

$$\mathcal{H}_{\mathrm{MF}} \Longrightarrow \mathcal{H}_{\mathrm{AF}} = \mathcal{H}_{\mathrm{MF}} + rac{h}{\sum_{j}} e^{i \mathbf{Q} \cdot \mathbf{R}_{j}} S_{j}^{ imes}$$

At the mean-field level, the constraint is only valid in average (global constraint)

$$\mathcal{H}_{\mathrm{MF}} \to \mathcal{H}_{\mathrm{MF}} - \mu \sum_{i} (c_{i,\uparrow}^{\dagger} c_{i,\uparrow} + c_{i,\downarrow}^{\dagger} c_{i,\downarrow} - 1) + \zeta \sum_{i} c_{i,\uparrow}^{\dagger} c_{i,\downarrow}^{\dagger} + h.c.$$

- Gapped energy spectrum \rightarrow gapped spin liquid
- Gapless energy spectrum \rightarrow gapless spin liquid Both gapped and gapless phases of the Kitaev compass model are reproduced Burnell and Nayak, Phys. Rev. B 84, 125125 (2011)
- Finite $h \rightarrow \text{magnetic order}$

Federico Becca (CNR and SISSA)

Beyond the mean-field approach

For h = 0, the ground state has the form of a BCS wave function:

$$|\Phi_{\rm MF}
angle = \exp\left\{\sum_{i,j} f_{i,j} (c^{\dagger}_{i,\uparrow}c^{\dagger}_{j,\downarrow} + c^{\dagger}_{j,\uparrow}c^{\dagger}_{i,\downarrow})\right\}$$

The exact local constraint can be enforced but a Monte Carlo sampling is necessary

$$|RVB\rangle = \mathcal{P}_{G}|\Phi_{\mathrm{MF}}\rangle$$
 $\mathcal{P}_{G} = \prod_{i}(1-n_{i,\uparrow}n_{i,\downarrow})$

A Monte Carlo sampling implies calculations of determinants, which can be computed in a polynomial time

naa

・ロト ・ 同ト ・ ヨト ・

The projected wave function

• The mean-field wave function has a BCS-like form

$$|\Phi_{MF}
angle = \exp\left\{rac{1}{2}\sum_{i,j}f_{i,j}c_{i,\uparrow}^{\dagger}c_{j,\downarrow}^{\dagger}
ight\}|0
angle$$

It is a linear superposition of all singlet configurations (that may overlap)

• After projection, only non-overlapping singlets survive: the resonating valence-bond (RVB) wave function

Anderson, Science 235, 1196 (1987)

Federico Becca (CNR and SISSA)

Different pairing functions give different states...

nar

The "mother" of all wave functions

• The simplest wave function can be defined with $\chi_{ij} = t$ and no pairing $\Delta_{ij} = 0$

$$\mathcal{H}_{\mathrm{MF}} = t \sum_{\langle i,j
angle, lpha} oldsymbol{c}^{\dagger}_{i, lpha} oldsymbol{c}_{j, lpha} + \mathrm{h.c.}$$

- Dirac points in the spinon spectrum
- U(1) gauge structure
- Power-law spin-spin correlations

U(1) Dirac state

Very good energy per site especially for $J_2/J_1 \approx 0.2$

-

naa

$$|\Psi\rangle = \mathcal{J}_z \mathcal{P}_{S_{tot}^z=0} \mathcal{P}_G |\Phi_{MF}\rangle$$

where $|\Psi_{\rm MF}\rangle$ is the ground state of:

$$\mathcal{H}_{\mathrm{MF}} = t \sum_{\langle i,j \rangle, \alpha} c^{\dagger}_{i,\alpha} c_{j,\alpha} + \mathrm{h.c.} + h \sum_{j} e^{i \mathbf{Q} \cdot \mathbf{R}_{j} + \eta_{j}} S^{x}_{j}$$

with $\mathbf{Q} = (0,0)$ and $\eta_j = 0$ (π) on \mathcal{A} (\mathcal{B}) sublattices.

- ullet For t= 0, $|\Psi_{
 m MF}
 angle
 ightarrow |{
 m Cl}
 angle$ (localized, i.e., "bosonic, state)
- Remarkably (and mysteriously), there is a finite energy gain with $t \neq 0$
- Quantum fluctuations are generated by the Jastrow factor

$$\mathcal{J}_z = \exp\left(\frac{1}{2}\sum_{ij}v_{ij}S_i^zS_j^z\right)$$

Federico Becca (CNR and SISSA)

500

<ロト < 団 > < 巨 > < 巨 > < 三</p>

• Results for the accuracy on the 24-site cluster

< A ▶

э

DQC

Size scaling of the AF order parameter for small J_2/J_1

• We compute the isotropic spin-spin correlations at the largest distance

$$m^2 = \lim_{r o \infty} \langle {f S}_0 \cdot {f S}_r
angle$$

Federico Becca (CNR and SISSA)

The AF state for small J_2/J_1

Z. Zhu et al., Phys. Rev. Lett. 110, 127205 (2013)

Federico Becca (CNR and SISSA)

Benasque 23 / 32

The magnetically disordered phase for intermediate J_2/J_1

• Is it a gapped or gapless spin liquid? Based on a wrong prejudice (the Hubbard model sustains a gapped SL phase for moderate U/t) people were interested in gapped SL in the J_1-J_2 model

Projective symmetry-group (PSG) analysis

Y.-M. Lu and Y. Ran, Phys. Rev. B 84, 024420 (2011)

Only one gapped SL with short-range couplings Number 19, called sublattice pairing state (SPS)

All the other states are gapless

TABLE I. A summary of all 24 different PSGs with IGG = $\{\pm \tau^0\}$ around the u-RVB ansatz. They correspond to 24 different Z₂ SLs near the u-RVB state.

No.	81	80	8c6	81	82
1	τ^0	τ^0	τ^0	τ ⁰	τ^0
2	τ ⁰	τ^0	$i\tau^3$	τ0	τ ⁰
3	τ^0	τ^0	$i\tau^3$	$e^{i 2\pi/3t^{1}}$	$e^{-i2\pi/3\tau^{1}}$
4	τ^0	ir3	$i\tau^3$	τ0	τ ⁰
5	τ^0	ir ³	$i\tau^3$	τ0	τ
6	τ^0	ir ³	i t ¹	τ0	τ ⁰
7	τ^0	ir ³	e ^{i π/6r¹}	7 ⁰	τ ⁰
8	τ^0	ir3	$e^{i\pi/3\tau^1}$	τ^0	τ^0
9	τ^0	$i\tau^3$	i T ¹	$e^{i 2\pi/3t^3}$	$e^{-i 2\pi/3\pi^3}$
10	τ^0	$i\tau^3$	$e^{i 2\pi/3r^3}$	$i\left(\frac{\tau^1}{\sqrt{3}} - \sqrt{\frac{2}{3}}\tau^2\right)$	$i\left(\frac{t^3}{\sqrt{2}} - \frac{t^2}{\sqrt{6}} - \frac{t^1}{\sqrt{3}}\right)$
11	$i\tau^3$	τ ⁰	τ^0	τ	τ ⁰
12	$i\tau^3$	τ^0	$i\tau^3$	τ ⁰	τ ⁰
13	it ³	τ^0	i t ¹	τ ⁰	τ ⁰
14	i T ³	τ^0	i T ¹	$e^{i 2\pi/3t^3}$	$e^{-i 2\pi/3\tau^3}$
15	$i\tau^3$	ir3	τ^0	τ0	τ ⁰
16	$i\tau^3$	i τ^3	i z 3	τ ⁰	7 ⁰
17	$i\tau^3$	ir ³	$i\tau^1$	τ^0	τ0
18	$i\tau^3$	ir3	$i\tau^1$	$e^{i 2\pi/3t^3}$	$e^{-i 2\pi/3\tau^3}$
19	$i\tau^3$	i t ¹	i T ¹	τ^0	τ
20	$i\tau^3$	ir ¹	iτ ²	τ^0	τ^0
21	$i\tau^3$	iτ ¹	τ^0	τ0	τ ⁰
22	$i\tau^3$	iτ ¹	i τ^3	7 ⁰	7 ⁰
23	$i\tau^3$	ir ¹	e ^{iπ/6τ³}	τ0	τ0
24	$i\tau^3$	iτ ¹	ei #/3r3	τ ⁰	70

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The SPS gapped spin liquid

• The SPS state has NN hopping and NNN pairing (with opposite phases on the two sublattices)

$$\mathcal{H}_{\mathrm{MF}} = t \sum_{\langle i,j \rangle, \alpha} c^{\dagger}_{i,\alpha} c_{j,\alpha} + \Delta e^{i\theta} \sum_{\langle \langle i,k \rangle \rangle \in \mathcal{A}} c^{\dagger}_{i,\uparrow} c^{\dagger}_{k,\downarrow} + \Delta e^{-i\theta} \sum_{\langle \langle i,k \rangle \rangle \in \mathcal{B}} c^{\dagger}_{i,\uparrow} c^{\dagger}_{k,\downarrow} + \mathrm{h.c.}$$

• Results for the accuracy on the 24-site cluster

A.

The SPS gapped spin liquid

- The variational energy is (almost) insensitive on θ
- The "best" energy is obtained with $\theta = 0$ (corresponding to a U(1) SL)
- Previous VMC calculations by B. Clark were affected by a mistake

B.K. Clark, D.A. Abanin, and S.L. Sondhi, Phys. Rev. Lett. 107, 087204 (2011) More reliable calculations by O. Motrunich

S.-S. Gong et al., Phys. Rev. B 88, 165138 (2013)

naa

A gapless Z_2 spin liquid

• There is a gapless state with NN hopping and NNN pairing

$$\mathcal{H}_{\mathrm{MF}} = \sum_{\langle i,j\rangle,\alpha} t e^{\imath \theta_{ij}} c^{\dagger}_{i,\alpha} c_{j,\alpha} + \sum_{\langle \langle i,k\rangle \rangle} \Delta e^{-\imath \theta_{ik}} c^{\dagger}_{i,\uparrow} c^{\dagger}_{k,\downarrow} + \mathrm{h.c.}$$

BLUE: $\theta_{ij} = 0$ RED: $\theta_{ij} = 2\pi/3$ GREEN: $\theta_{ij} = 4\pi/3$

5900

・ロト ・ 同ト ・ ヨト ・

A gapless Z_2 spin liquid

DQC

(日)

Comparison with VBS plaquette states

• Is it a valence-bond solid (VBS), with plaquette order?

 \bullet On the 4 \times 4 \times 6 cluster, the energy landscape:

Federico Becca (CNR and SISSA)

 \bullet On the 10 \times 10 \times 6 cluster:

 $\begin{array}{ll} \mbox{For } J_2/J_1 = 0.30 & E_{\rm SL} = -0.41907(1) \longrightarrow E_{\rm SL+VBS} = -0.41950(1) \\ \mbox{For } J_2/J_1 = 0.35 & E_{\rm SL} = -0.40482(1) \longrightarrow E_{\rm SL+VBS} = -0.40675(2) \end{array}$

• No sign of dimer order is found (at most anti-plaquette)

SQA

イロト イポト イヨト イヨト

Collinear and $\mathbf{Q} = (\pi, 0)$ AF for $J_2/J_1 \approx 0.4 \div 0.45$

The collinear state becomes energetically favorable for $J_2/J_1 > 0.45$

• On the $4 \times 4 \times 6$ cluster:

990

・ロン ・白ン ・ヨン ・ヨン

By using Jastrow-Slater variational wave functions

• $\mathbf{Q}=(0,0)$ up to $J_2/J_1pprox 0.25$

(in agreement with DMRG results!)

- The SPS gapped SL is a local minimum but other states compete with it in the highly-frustrated regime
- A 6-site plaquette state is stabilized up to $J_2/J_1 \approx 0.45$ (in agreement with DMRG results!)
- A collinear AF state with $\mathbf{Q} = (0, \frac{2\pi}{\sqrt{3}})$ is found for $0.45 < J_2/J_1 < 0.55$
- Chiral phases (with J₃?)
- Deconfined criticality?

(yesterday: $\eta_s pprox 0.75$ and $u_s pprox 0.67???$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで