CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS

Matthieu Mambrini

Laboratoire de Physique Théorique

CNRS & Université de Toulouse

M.M., R. Orús, D. Poilblanc, Phys. Rev. B **94**, 205124 (2016) D. Poilblanc, M.M., arXiv:1702.05950

OUTLINE

- SU(2) symmetric PEPS on the square lattice Why ? Construction / Classification scheme
- Some remarkable PEPS
- $J_1 J_2$ model on the square lattice. PEPS description of the QCP
- Perspectives

TENSOR CLASSIFICATION

Symmetry matters !

Symmetry ??

Strategy : systematic building of SU(2) invariant and linearly independent tensors organized in classes C with identical physical S and virtual V degrees of freedom and identical IRREP of the lattice point group

liquids manifolds

controlled symmetry breaking (lattice/spin nematics, chiral spin liquids...)

State optimization

Optimized ansätze for frustrated Heisenberg model

TENSOR CLASSIFICATION SYMMETRIES

Discrete symmetries

- Translation invariance
- Point group C_{4v}

 $(s, u, l, d, r) \in S \otimes V^{\otimes 4}$

SU(2)-Spin rotational invariance

 A_s encodes a projector P_s

$$V^{\otimes 4} \longrightarrow S$$
$$(u, l, d, r) \longmapsto |s\rangle = |S, S_z = s\rangle$$

TENSOR CLASSIFICATION PRINCIPLE

finding all projectors $P_s \Leftrightarrow$

enumerate all D^4 orthogonal spin-S wave functions that can be constructed out of the $(\oplus V_i)^{\otimes 4}$ basis states

$$|s\rangle = \sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4} A_s(\alpha_1,\alpha_2,\alpha_3,\alpha_4) |\alpha_1,\alpha_2,\alpha_3,\alpha_4\rangle$$

orthogonality

$$\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4} [A_s(\alpha_1,\alpha_2,\alpha_3,\alpha_4)]^* B_{s'}(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = \delta_{ss'} \delta_{AB}$$

TENSOR CLASSIFICATION PRINCIPLE

SU(2) invariance global singlet

contracting NN virtual spins virtual singlets Bipartite lattice π rotation around Y-axis on one sublattice **bond singlet becomes** $|S\rangle = \sum_{\alpha=1}^{D} |v_{\alpha}v_{\alpha}\rangle$

TENSOR CLASSIFICATION CONSERVED QUANTITIES

- SU(2): total spin and z-component $S^{2} = (S_{1} + S_{2} + S_{3} + S_{4})^{2}$ $S^{z} = S_{1}^{z} + S_{2}^{z} + S_{3}^{z} + S_{4}^{z}$ Composite spin $V = \oplus V_{i}$ $D = \sum_{i} (2V_{i} + 1)$ $D = \sum_{i} (2V_{i} + 1)$ D = 5 + 2 + 1
- Point group : $\mathcal{R}_{\pi/2}$ rotation (A,B,E) and Δ_x reflection (1,2)
- Occupation numbers $\{n_i\}$ such as $\sum n_i = 4$

 Example
 Image: Second symple
 Image: Seco

TENSOR CLASSIFICATION IN PRACTICE

Fix $V = \oplus V_i$ Generate the D^4 basis states with $D = \sum_i (2V_i + 1)$

$$\mathcal{O}_{\sigma,\sigma_z,\rho,\delta,\nu} = \sigma \mathbf{S}^2 + \sigma_z S_z + \rho \mathcal{R} + \delta \Delta + \nu \mathcal{N}$$

Find all D^4 eigenvalues and eigenvectors

Problems

- we want analytical expressions of tensors (Mathematica)
- for e.g. D = 7, too large Hilbert space $D^4 = 2401$

TENSOR CLASSIFICATION IN PRACTICE

$$\mathcal{O}_{\sigma,\sigma_z,\rho,\delta,\nu} = \sigma \mathbf{S}^2 + \sigma_z S_z + \rho \mathcal{R} + \delta \Delta + \nu \mathcal{N}$$

Key points

- Numerical diagonalization (eigenvalues and eigenvectors) possible
- The analytical form of the eigenvalues is known

Recipe

- 1. Numerical diagonalization
- 2. Exact eigenvalues and degeneracies
- 3. Eigenvector masks (discard 0 components)
- 4. Exact target eigenvalue λ + eigenvector mask (subspace \mathcal{E}), find $\ker_{\mathcal{E}}(\mathcal{O} \lambda.\mathrm{Id})$
- 5. Check degeneracy

TENSOR CLASSIFICATION EXAMPLE

TENSOR CLASSIFICATION EXAMPLE

Tensor

 $T_{\frac{1}{2}}(0,0,2,1) = \frac{1}{2\sqrt{2}}$

 $T_{\frac{1}{2}}(0,1,0,2) = -\frac{\imath}{2\sqrt{2}}$

 $T_{\frac{1}{2}}(0,2,0,1) = \frac{i}{2\sqrt{2}}$

 $T_{\frac{1}{2}}(0,2,1,0) = -\frac{\imath}{2\sqrt{2}}$

 $T_{\frac{1}{2}}(1,0,0,2) = \frac{i}{2\sqrt{2}}$

 $T_{\frac{1}{2}}(1,0,2,0) = -\frac{1}{2\sqrt{2}}$

 $T_{\frac{1}{2}}(2,0,1,0) = \frac{1}{2\sqrt{2}}$

 $T_{\frac{1}{2}}(2,1,0,0) = -\frac{1}{2\sqrt{2}}$

TENSOR CLASSIFICATION (AWFULL) EXAMPLE

 $\frac{\left(\frac{115-23i}{4}\right)\left|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},-\frac{5}{2},\frac{3}{2},\frac{5}{2}\right\}\right\rangle}{\sqrt{689997}}+\left(\frac{5}{2}i\sqrt{\frac{7}{98571}}-\frac{1}{4\sqrt{689997}}\right)\left|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},-\frac{5}{2},\frac{5}{2},\frac{3}{2}\right\}\right\rangle+$ $\frac{43\sqrt{\frac{5}{1379994}}}{44} + \frac{5}{4}i\sqrt{\frac{35}{197142}} \right) | \left\{ S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{1}{2}, \frac{5}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle - \left(\frac{53}{4} + 15i\right)\sqrt{\frac{3}{229999}} | \left\{ S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{3}{2} \right\} \rangle$ $\left(\frac{205}{4}i\sqrt{\frac{5}{1379994}} + \frac{1}{\sqrt{6899970}}\right) | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{3}{2}, \frac{5}{2}, \frac{1}{2}\right\} \rangle + \left(\frac{73}{2}i\sqrt{\frac{5}{689997}} + \frac{3\sqrt{\frac{165}{20999}}}{4}\right) | \left\{S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, -\frac{$ $\left(\frac{7\sqrt{\frac{7}{98571}}}{4} - \frac{5}{4}i\sqrt{\frac{77}{8961}}\right) | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right\} \rangle + \frac{\left(\frac{79}{2} + \frac{125i}{2}\right) | \left\{S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right\} \rangle}{\sqrt{689997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}} | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right\} \rangle}{\sqrt{68997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}} | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right\} \rangle}{\sqrt{68997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}} | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right\} \rangle}{\sqrt{68997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}} | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right\} \rangle}{\sqrt{68997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}} | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\} \rangle}{\sqrt{68997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}} | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\} \rangle}{\sqrt{68997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}} | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\} \rangle}{\sqrt{68997}} + \frac{125i}{2}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{2}}i\sqrt{\frac{1}{$ $\left(-\frac{15}{2}i\sqrt{\frac{3}{229999}}-\frac{47}{2\sqrt{689997}}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},-\frac{1}{2},\frac{3}{2}\right\}\rangle-(23-15i)\sqrt{\frac{3}{459998}}|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\rangle+(23-15i)\sqrt{\frac{3}{459998}}|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\rangle+(23-15i)\sqrt{\frac{3}{459998}}|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\rangle+(23-15i)\sqrt{\frac{3}{459998}}|\left\{S_{1},S_{1},-\frac{5}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\rangle+(23-15i)\sqrt{\frac{3}{459998}}|\left\{S_{1},S_{1},-\frac{5}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\rangle+(23-15i)\sqrt{\frac{3}{459998}}|\left\{S_{1},S_{1},-\frac{5}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{$ $\left(-\frac{25}{2}i\sqrt{\frac{7}{98571}}-\frac{41}{2\sqrt{689997}}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},\frac{3}{2},-\frac{1}{2}\right\}\rangle+\left(-\frac{155}{4}i\sqrt{\frac{5}{1379994}}+\frac{\sqrt{\frac{77}{89610}}}{2}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},-\frac{1}{2}\right\}\rangle$ $\left(-\frac{15}{4}i\sqrt{\frac{3}{229999}}-\frac{5\sqrt{\frac{21}{32577}}}{4}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},\frac{3}{2},-\frac{5}{2},\frac{5}{2}\right\}\rangle+\left(\frac{15}{4}i\sqrt{\frac{3}{229999}}-\frac{43\sqrt{\frac{7}{98571}}}{4}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{3}{2},-\frac{5}{2},\frac{5}{2}\right\}\rangle$ $\left(-\frac{15}{4}i\sqrt{\frac{3}{229999}}+\frac{\sqrt{\frac{11}{62727}}}{4}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},\frac{3}{2},-\frac{1}{2},\frac{1}{2}\right\}\rangle+\left(\frac{65}{2}i\sqrt{\frac{3}{229999}}+\frac{107}{2\sqrt{689997}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{3}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right\}\rangle$ $\frac{\sqrt{\frac{3}{229999}}}{2} + \frac{305i}{4\sqrt{689997}} \right) | \left\{ S_1, S_1, S_1, S_1, -\frac{5}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \right\} \rangle - \frac{\left(\frac{23}{2} + \frac{115i}{4}\right) | \left\{ S_1, S_1, S_1, -\frac{5}{2}, \frac{3}{2}, \frac{5}{2}, -\frac{5}{2} \right\} \rangle}{\sqrt{689997}} + \frac{100}{2} | \left\{ S_1, S_2, S_1, S_2, S_1, -\frac{5}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \right\} \rangle - \frac{\left(\frac{23}{2} + \frac{115i}{4}\right) | \left\{ S_1, S_2, S_1, -\frac{5}{2}, \frac{3}{2}, \frac{5}{2}, -\frac{5}{2} \right\} \rangle}{\sqrt{689997}} + \frac{100}{2} | \left\{ S_1, S_2, S_1, S_2, -\frac{5}{2}, \frac{3}{2}, \frac{3}{2}, -\frac{3}{2} \right\} \rangle - \frac{\left(\frac{23}{2} + \frac{115i}{4}\right) | \left\{ S_2, S_2, \frac{5}{2}, \frac{$ $\left(\frac{15}{4}i\sqrt{\frac{3}{229999}} + \frac{5\sqrt{\frac{21}{32857}}}{4}\right) | \left\{S_1, S_1, S_1, S_1, S_1, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{67\sqrt{\frac{5}{1379994}}}{4} + \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{67\sqrt{\frac{5}{1379994}}}{4} + \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{67\sqrt{\frac{5}{1379994}}}{4} + \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{67\sqrt{\frac{5}{1379994}}}{4} + \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{67\sqrt{\frac{5}{1379994}}}{4} + \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{67\sqrt{\frac{5}{1379994}}}{4} + \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, -\frac{5}{2}, \frac{5}{2}, -\frac{5}{2}, -\frac{5}{2},$ $\left(\frac{47}{4}-\frac{79i}{2}\right)\sqrt{\frac{5}{689997}}|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},\frac{5}{2},-\frac{1}{2},-\frac{1}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{435}{15862}}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{435}{15862}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{435}{15862}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{435}{15862}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{435}{15862}}\right)|\left\{S_{1},S_{1},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{435}{15862}}\right)|\left\{S_{1},S_{1},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{435}{15862}}\right)|\left\{S_{1},S_{1},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},S_{2},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},S_{2},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{47586}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},S_{2},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},S_{2},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},S_{2},-\frac{5}{2},\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},-\frac{5}{2},-\frac{5}{2},\frac{1}{2},-\frac{3}{2}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},-\frac{5}{15862}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},-\frac{5}{15862}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},-\frac{5}{15862}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},-\frac{5}{15862}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}}-\frac{1}{2}i\sqrt{\frac{145}{15862}}\right)|\left\{S_{1},-\frac{5}{15862}-\frac{1}{15862}\right\}\rangle+\left(-\sqrt{\frac{145}{15862}-\frac{1}{15862}-\frac{1}{15862}\right)|\left\{S_{1},-\frac{15}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac{1}{15862}-\frac$ $\left(\frac{5\sqrt{\frac{7}{98571}}}{2} + \frac{i}{4\sqrt{689997}}\right) | \left\{S_1, S_1, S_1, S_1, -\frac{5}{2}, \frac{5}{2}, \frac{3}{2}, -\frac{5}{2}\right\} \rangle + \left(\frac{155\sqrt{\frac{5}{1379994}}}{4} + \frac{1}{2}i\sqrt{\frac{77}{89610}}\right) | \left\{S_1, S_1, S_1, S_1, -\frac{3}{2}, -\frac{5}{2}, \frac{1}{2}, -\frac{5}{2}, -\frac{5}{2}$ $\left(\frac{1}{2}i\sqrt{\frac{3}{229999}} - \frac{305}{4\sqrt{689997}}\right) | \left\{S_1, S_1, S_1, S_1, -\frac{3}{2}, -\frac{5}{2}, \frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(-i\sqrt{\frac{145}{47586}} + \frac{\sqrt{\frac{435}{1562}}}{2}\right) | \left\{S_1, S_1, S_1, -\frac{3}{2}, -\frac{5}{2}, \frac{5}{2}, \frac{1}{2}, -\frac{5}{2}, -\frac{5}{2}, \frac{1}{2}, -\frac{5}{2}, -\frac{5$ $\frac{(\frac{415}{2} - \frac{71i}{4})|\{S_1, S_1, S_1, S_1, -\frac{3}{2}, -\frac{3}{2}, -\frac{1}{2}, \frac{5}{2}\}\rangle}{\sqrt{1379994}} + \left(\frac{1}{2}i\sqrt{\frac{5}{1379994}} + \sqrt{\frac{30}{229999}}\right)|\{S_1, S_1, S_1, S_1, -\frac{3}{2}, -\frac{3}{2}, \frac{1}{2}, \frac{3}{2}\}\rangle + \left(\frac{37\sqrt{\frac{5}{1379994}}}{4} + \frac{7}{4}i\sqrt{\frac{35}{197142}}\right)|\{S_1, S_1, S_1, S_1, -\frac{3}{2}, -\frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{3}{2$ $\left(-13i\sqrt{\frac{11}{125454}}-\frac{5}{\sqrt{1379994}}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{3}{2},-\frac{1}{2},-\frac{3}{2},\frac{5}{2}\right\}\rangle-\left(\frac{19}{2}-\frac{79i}{4}\right)\sqrt{\frac{5}{689997}}|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{3}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac$ $\frac{19\sqrt{\frac{5}{1379994}}}{4} + 5i\sqrt{\frac{30}{229999}} \right) | \left\{ S_1, S_1, S_1, S_1, S_1, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right\} \rangle + \left(\frac{19}{2} - \frac{25i}{2}\right)\sqrt{\frac{5}{689997}} | \left\{ S_1, S_1, S_1, -\frac{3}{2}, -\frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, \frac{\left(\frac{71}{4}+\frac{415i}{2}\right)|\left\{S_{1},S_{1},S_{1},-\frac{3}{2},-\frac{1}{2},\frac{5}{2},-\frac{3}{2}\right\}\rangle}{\sqrt{1379994}} + \left(-\frac{67\sqrt{\frac{5}{1379994}}}{2} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},-\frac{5}{2},\frac{5}{2}\right\}\rangle + \frac{15}{4}i\sqrt{\frac{15}{1379994}} - \frac{15}{4}i\sqrt{\frac{15}{1379994}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},-\frac{5}{2},\frac{5}{2}\right\}\rangle + \frac{15}{4}i\sqrt{\frac{15}{1379994}} - \frac{15}{4}i\sqrt{\frac{15}{1379994}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},-\frac{5}{2},\frac{5}{2}\right\}\rangle + \frac{15}{4}i\sqrt{\frac{15}{1379994}} - \frac{15}{4}i\sqrt{\frac{15}{1379994}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{5}{2},\frac{1}{2},-\frac{5}{2},\frac{5}{2}\right\}\rangle + \frac{15}{4}i\sqrt{\frac{15}{1379994}} - \frac{15}{13}i\sqrt{\frac{15}{1379994}} - \frac{15}{13}i\sqrt{\frac{$ $\left(\frac{15}{4}i\sqrt{\frac{15}{459998}} + \frac{5\sqrt{\frac{105}{65714}}}{4}\right) | \left\{S_1, S_1, S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{5}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{15}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{15}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{15}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{15}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{15}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{15}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, S_1, -\frac{3}{2}, \frac{1}{2}, -\frac{3}{2}, \frac{3}{2}\right\} \rangle + \left(\frac{185\sqrt{\frac{15}{1579994}}}{4} - \frac{15}{4}i\sqrt{\frac{15}{459998}}\right) | \left\{S_1, -\frac{15}{2}i\sqrt{\frac{15}{157}}\right\} \rangle + \left(\frac{15}{157}i\sqrt{\frac{15}{157}}\right) | \left\{S_1, -\frac{15}{157}i\sqrt{\frac{15}{157}}\right\} \rangle + \left(\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}}}\right) | \left\{S_1, -\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{157}i\sqrt{\frac{15}{$ $\left(-\frac{95}{4}i\sqrt{\frac{5}{1379994}}-4\sqrt{\frac{30}{229999}}\right)|\left\{S_{1},S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2}\right\}\rangle+\left(\frac{\sqrt{\frac{5}{1379994}}}{2}-i\sqrt{\frac{30}{229999}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{5}{2},-\frac{1}{2}\right\}\rangle+\left(\frac{\sqrt{\frac{5}{1379994}}}{2}-i\sqrt{\frac{30}{229999}}\right)|\left\{S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{5}{2},-\frac{1}{2}\right\}\rangle$ $\left(-\frac{43}{4}i\sqrt{\frac{5}{1379994}}+\frac{5\sqrt{\frac{35}{197142}}}{4}\right)|\left\{S_{1},S_{1},S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{5}{2},-\frac{5}{2}\right\}\rangle+\left(-\frac{15}{4}i\sqrt{\frac{3}{229999}}+\frac{43\sqrt{\frac{7}{98571}}}{4}\right)|\left\{S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{5}{2},-\frac{5}{2}\right\}\rangle+\left(-\frac{15}{4}i\sqrt{\frac{3}{229999}}+\frac{43\sqrt{\frac{7}{98571}}}{4}\right)|\left\{S_{1},S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{5}{2},-\frac{5}{2}\right\}\rangle+\left(-\frac{15}{4}i\sqrt{\frac{3}{229999}}+\frac{43\sqrt{\frac{7}{98571}}}{4}\right)|\left\{S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{5}{2},-\frac{5}{2}\right\}\rangle+\left(-\frac{15}{4}i\sqrt{\frac{3}{229999}}+\frac{43\sqrt{\frac{7}{98571}}}{4}\right)|\left\{S_{1},S_{1},-\frac{3}{2},\frac{1}{2},\frac{5}{2},-\frac{5}{2}\right\}\rangle$ $-\frac{15}{4}i\sqrt{\frac{15}{459998}} - \frac{5\sqrt{\frac{105}{65714}}}{4}\right) | \left\{ S_1, S_1, S_1, S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle + \left(-2\sqrt{\frac{5}{689997}} - \frac{7}{4}i\sqrt{\frac{35}{98571}}\right) | \left\{ S_1, S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle + \left(-2\sqrt{\frac{5}{689997}} - \frac{7}{4}i\sqrt{\frac{35}{98571}}\right) | \left\{ S_1, S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle + \left(-2\sqrt{\frac{5}{689997}} - \frac{7}{4}i\sqrt{\frac{35}{98571}}\right) | \left\{ S_1, S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle + \left(-2\sqrt{\frac{5}{689997}} - \frac{7}{4}i\sqrt{\frac{35}{98571}}\right) | \left\{ S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle + \left(-2\sqrt{\frac{5}{689997}} - \frac{7}{4}i\sqrt{\frac{35}{98571}}\right) | \left\{ S_1, S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle + \left(-2\sqrt{\frac{5}{689997}} - \frac{7}{4}i\sqrt{\frac{35}{98571}}\right) | \left\{ S_1, S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle + \left(-2\sqrt{\frac{5}{689997}} - \frac{7}{4}i\sqrt{\frac{35}{98571}}\right) | \left\{ S_1, S_1, S_1, -\frac{3}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{1}{2} \right\} \rangle$

TENSOR CLASSIFICATION USER MANUAL

Classification completed up to D = 6 (D = 7 also accessible)

Symmetry tables and tensor expressions available as supplementary materials

M.M., R. Orús, D. Poilblanc, Phys. Rev. B 94, 205124 (2016)

Tensors with different PG symmetries may lead to the same TN state after contraction

GAUGE EQUIVALENT TENSORS

V V	5 1/2	1
		$\mathbf{B_1} E$
$\frac{1}{2}$)	
$n_{\text{occ.}}$ =	$1,3$ $\mathbf{A_1}[\mathbf{B_1}] \mathbf{E}$	
$n_{\rm occ.} =$	$\{2,2\}$ A ⁽¹⁾	^{a)} $A_1^{(b)}[B_1] E B_2$
$n_{\rm occ.} =$	$\{3,1\}$ $A_1[B_1] E^{(a,b)} A_2[B_2]$	
]		$B_1 E^{(a,b)} A_2$
$rac{1}{2} \oplus 0$	$ \ni 0 $	
$n_{\text{occ.}} =$	$,1,2\} \qquad A_1^{(a,b)}[B_1^{(a,b)}] E^{(a-c)} A_2[B_2]$	
$n_{\rm occ.} =$	$\{,1,1\}$ $A_1^{(a,b)}[$	$[B_1^{(a,b)}] E^{(a-c)} A_2[B_2]$
$\frac{1}{2}$		
	$\begin{array}{c} (a - b) = (a - c) \\ (a - c) = (a - c) \\$	
$n_{\rm occ.}$	$A_1^{(a,b)}[B_1^{(a,b)}] E^{(a-c)} A_2[B_2]$	
$n_{\text{occ.}} =$	$\{A_1^{(a,b)}[B_1^{(a,b)}] E^{(a-c)} A_2[B_2] $	
$n_{\rm occ.} =$	$A_1[B_1] E^{(a-c)} A_2^{(a,b)}[B_2^{(a,b)}]$	$A_1^{(a,b)}[B_1^{(a,b)}] E^{(a-c)} A_2[B_2]$
n _{occ.}	1,3} $A_1^{(a,b)}[B_1^{(a,b)}] E^{(a-c)} A_2[B_2]$ $A_1^{(a,b)}[B_1^{(a,b)}] E^{(a-c)} A_2[B_2]$	2]
$n_{\text{occ.}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_{1}^{(a,b)}[B_{1}^{(a,b)}] B_{1}^{(c)} E^{(a-e)} A_{2}[B_{2}] B_{2}$
		4 J
	$\begin{array}{c} 1, 3 \\ 2, 2 \\ \end{array} \qquad \qquad$	$B_1[A_2] \; E^{(a,b)}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} (a,b) \\ 2 \end{bmatrix} = \begin{bmatrix} (a,b) \\ (a$
	$B_1^{(a,b)}[A_2^{(a,b)}] E^{(a-d)}$	$A_1^{(a,o)}[B_1^{(a,o)}] A_1^{(c,a)} E^{(a-c)} A_2[B_2^{(a)}] B_2^{(b,c)}$

REMARKABLE PEPS

REMARKABLE PEPS SPIN-S (S EVEN INTEGER) AKLT STATES

Generalization

S = 2k $V = \frac{k}{2}$ D = k + 1

k integer

REMARKABLE PEPS SPIN-1/2 RVB STATE

REMARKABLE PEPS FERMIONIC SPIN-1/2 RVB STATE

REMARKABLE PEPS GENERALIZED SPIN-S RVB STATE

Singlet bond distribution controlled by the ratio λ_2/λ_1

GENERIC SPIN LIQUIDS

Linearly combine (real coefficients) tensors with :

- same physical and virtual degrees of freedom
- same IRREP of C4v

 $\sum_{i \in \mathcal{C}} \lambda_i A^{(i)}$

Class with ${\mathcal D}$ tensors

 $\mathcal{D}-1$ dimensional family of completely symmetric spin liquids which (potentially) do not break any symmetry, neither SU(2) or point group symmetries

$V \setminus S$	1/2	1	3/2	2
$\frac{1}{2}$	0/0/0/0/0	0/1/0/0/1	0/0/0/0/0	1/0/0/0/0
$rac{1}{2} \oplus 0$	2/2/1/1/3	2/2/0/1/2	1/1/0/0/1	1/0/0/0/0
1	0/0/0/0/0	0/1/1/0/2	0/0/0/0/0	2/1/0/1/1
$rac{1}{2}\oplus 0\oplus 0$	8/8/4/4/12	6/5/1/3/6	2/2/0/0/2	1/0/0/0/0
$rac{1}{2}\oplusrac{1}{2}$	0/0/0/0/0	6/9/4/3/13	0/0/0/0/0	6/3/0/1/3
$1\oplus 0$	0/0/0/0/0	3/5/3/1/8	0/0/0/0/0	5/3/1/3/4
$\frac{3}{2}$	0/0/0/0/0	0/2/1/0/3	0/0/0/0/0	3/1/1/2/2
$rac{1}{2}\oplus 0\oplus 0\oplus 0$	21/21/12/12/33	12/10/3/6/13	3/3/0/0/3	1/0/0/0/0
$rac{1}{2}\oplusrac{1}{2}\oplus 0$	10/10/8/8/18	12/13/5/6/18	6/6/2/2/8	6/3/0/1/3
$1\oplus 0\oplus 0$	0/0/0/0/0	11/14/9/6/23	0/0/0/0/0	10/7/3/6/10
$1\oplus \tfrac{1}{2}$	4/4/3/3/7	5/5/3/4/8	5/5/3/3/8	5/4/2/2/6
$rac{3}{2}\oplus 0$	1/1/1/1/2	2/3/1/1/4	3/3/2/2/5	3/2/2/2/4
2	0/0/0/0/0	0/2/2/0/4	0/0/0/0/0	4/2/1/3/3
$\frac{1}{2} \oplus 0 \oplus 0 \oplus 0 \oplus 0$	44/44/28/28/72	20/17/6/10/23	4/4/0/0/4	1/0/0/0/0
$\tfrac{1}{2} \oplus \tfrac{1}{2} \oplus 0 \oplus 0$	28/28/20/20/48	25/24/11/14/35	12/12/4/4/16	6/3/0/1/3
$rac{1}{2}\oplusrac{1}{2}\oplusrac{1}{2}$	0/0/0/0/0	33/39/24/21/63	0/0/0/0/0	21/15/3/6/18
$1\oplus 0\oplus 0\oplus 0$	0/0/0/0/0	27/31/22/18/53	0/0/0/0/0	17/13/6/10/19
$1\oplus \tfrac{1}{2}\oplus 0$	11/11/8/8/19	13/13/8/9/21	11/11/7/7/18	10/8/4/5/12
$1 \oplus 1$	0/0/0/0/0	9/13/13/9/26	0/0/0/0/0	19/15/7/11/22
$rac{3}{2}\oplus 0\oplus 0$	2/2/2/2/4	6/6/2/3/8	10/10/6/6/16	4/4/5/4/9
$rac{3}{2}\oplusrac{1}{2}$	0/0/0/0/0	7/12/8/5/20	0/0/0/0/0	15/10/7/10/17
$2\oplus 0$	0/0/0/0/0	1/4/5/2/9	0/0/0/0/0	10/7/3/6/10
$\frac{5}{2}$	0/0/0/0/0	0/3/2/0/5	0/0/0/0/0	5/2/2/4/4

PLAYING WITH SYMMETRIES

Another strategy : explicitly break some symmetries by combining tensors belonging to different classes and/or making complex linear combinations

- Real combinations of e.g. A_1/B_1 horizontal/vertical bonds become inequivalent. Lattice nematics
- Partially break SU(2) down to U(1) by combining tensors with different S_z but with $\lambda_i = f(|S_z|)$. Spin nematics
- Using complex tensors (E) or making complex linear combination of real tensors. Time reversal symmetry breaking

$J_1 - J_2$ model on the square lattice

$J_1 - J_2$ MODEL ON THE SQUARE LATTICE

SU(2)-SYMMETRIC PEPS

Variational optimization

Key feature

Uniform A₁ ansatz leads to a small number of variational parameters to optimize

OPTIMIZATION

Conjugate gradient minimization

Small number of parameters allow for a brute force appraoch Requires efficient computation of the variational energy

iPEPS Corner Transfer Matrix method and RG algorithm

ENERGY

Remarkable consistency

Unique tensor depending on a small number of parameters

J	0.5	
DMRG	-0.4968	S-S. Gong et al., PRL 113 , 027201 (2014)
VMC	-0.4970(5)	W-J. Hu et al., PRB 88, 060402 (2013)
D = 9 PEPS	-0.4958(3)	L. Wang et al., PRB 94, 075143 (2016)
D = 7 iPEPS	-0.4949	This work

CORRELATIONS

CORRELATIONS

Linear divergence of correlation lengths with environment dimension

Algebraic (critical) behaviors for spin-spin and dimer-dimer correlations

Staggered magnetization vanishes for $~\chi \rightarrow \infty$

Qualitative change for D=7

 $J_2 = 0.5$ very close to J_{2c}

This PEPS give a good description of the QCP

CONCLUSIONS

- Simple classification scheme of all rank-5 SU(2)-spin rotational symmetric tensors (S,V) and C4v IRREP
- Remarkable PEPS (AKLT, RVB, Loops) are naturally recovered
- Playing with local bricks with controlled symmetry properties to design interesting quantum states

$$\sum_{i \in \mathcal{C}} \lambda_i A^{(i)}$$

natural route to spin liquids manifolds

 $\sum \lambda_i A^{(i)}$ $i \in \mathcal{C}.\mathcal{C}'$

controlled symmetry breaking (lattice/spin nematics, chiral spin liquids...)

 $\sum \lambda_i A^{(i)}$ $i \in C$

Optimized ansätze for frustrated Heisenberg model

- Description of non trivial states (QCP) with PEPS
- Direct extension to other point groups / lattices (triangular, kagome...)