Creating a bosonic fractional quantum Hall state by pairing fermions

Antoine Sterdyniak

Max-Planck-Institute for Quantum Optics

Entanglement in Strongly Correlated Systems, Benasque 15.02.2017

arXiv:1612.09184

with C. Repellin (MPIPKS) and T. Yefsah (ENS)

Topological phases and cold atomic gases

Topological phases have been at the center of research in condensed matter for almost forty years

- Fundamental interests:
 - Beyond Laundau theory of phase transition: no local order parameter, no symmetry breaking
 - Possible realization of anyonic statistics
- Applications:
 - quantum memories
 - topologically protected quantum computing
- Experimental progress:
 - Solid states physics: topological insulator, Weyl semi-metals, Majorana fermions (?), Chern insulator
 - Cold atomic systems: realization of topological band structure

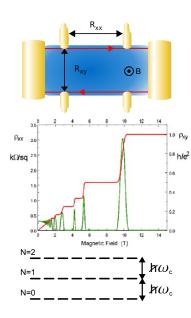
Interest of cold atomic systems:

- More controlled, clean and tunable systems
- Access to more observables, possibility of local manipulations

- Introduction to the Fractional Quantum Hall Effect
- FQHE without magnetic field: Fractional Chern Insulators
- Creating a bosonic fractional quantum Hall liquid by pairing fermions

Introduction to the Fractional Quantum Hall Effect

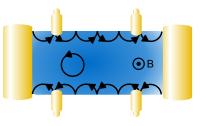
First topological phase: Integer Quantum Hall Effect



On each plateau:

$$\sigma_{xy} = C rac{\mathrm{e}^2}{h}$$
 , $\sigma_{xx} = 0$

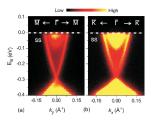
- Cyclotron frequency: $\omega_c = \frac{eB}{m}$
- Filling: $\nu = \frac{hC}{eB} = \frac{N}{N_{\phi}}$
- For $\nu = C$, C filled level and a gap $\hbar\omega_c$: insulator
- Transverse conductance: existence of chiral edge modes



Topological phases

- 81 83: Integer and Fractional Quantum Hall Effects
- 06 08: Topological Insulators
 - Different phases with the same symmetries
 - some physical quantities are related to a topological invariant (~ surface genus)
 - example: transverse conductance in IQHE (Chern Number)
 - Insensitive to local perturbations
 - Gapped systems in the bulk
 - Topological characteristic at the edge (edge modes)

3D TI:



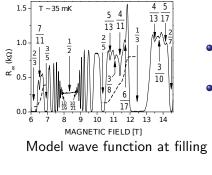
No topological order

- Unique groundstate on every surface
- No anyons in the bulk, but fractionalized edge excitations
- Examples: Free fermion TI, AKLT

Topological order

- Interactions needed
- Groundstate degeneracy depends on the surface genus
- Anyonic excitations in the bulk
- Examples: FQHE, toric code

The fractional quantum Hall effect



- Partial filling: extensive groundstate degeneracy
- Only explanation: Interactions

Model wave function at filling $\nu = \frac{1}{m}$

$$\Psi_L(z_1,...z_N) = \prod_{i< j} (z_i - z_j)^m e^{-\sum_i \frac{|z_i|^2}{4j^2}}$$

- Very good approximation of the ground state at $\nu = \frac{1}{3}$
- **Topological state**: the degeneracy of the model state depends on the surface genus (sphere: deg = 1, torus: deg =m

While only observed for fermions (so far!), QH physics can also appear for bosons

- IQHE can appear for bosons when ν is even and with interaction
- in the lowest Landau level: $\Psi_B = \Psi_F / \prod_{i < j} (z_i z_j)$

• filling
$$\nu_B^{-1} = \nu_F^{-1} - 1$$

- $\bullet\,$ example: $\nu=1/3$ Laughlin state $\rightarrow\,\nu=1/2$ Laughlin state
- shorter range interaction to realize the bosonic state

• example:
$$H_{m=3} = \sum_{i,j} \delta(z_i - z_j) \nabla \delta(z_i - z_j)$$
 vs
 $H_{m=2} = \sum_{i,j} \delta(z_i - z_j)$

Main candidate experimental systems: Optical lattices, rotating trap, Chern insulator

Quasihole state counting: generalized Pauli principle

- Quasiholes: excitations with fractional charge and anyonic statistic
- The number of groundstates and quasihole states (i.e. zero enery states of the parent Hamiltonians) can be predicted by a generalization of the Pauli principle
- Laughlin $\nu = 1/m$: no more than 1 particle in m consecutive orbitals (including periodic boundary conditions on the torus)
- Example: Laughlin $\nu=1/3$ state with 8 flux quanta

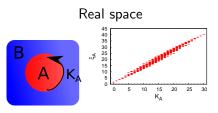
$L_Z =$	0	1	2	3	4	5	6	7	8		$L_Z = ($	C	1	2	3	4	5	6	7	8	
	1	0	0	1	0	0	1	0	0	\checkmark	-	1	0	0	0	1	0	1	0	0	X
$L_Z =$											$L_Z = ($	· .			-	_	-	-		-	
	1	0	0	0	1	0	0	1	0	\checkmark	(0	1	0	0	1	0	0	1	0	\checkmark

These numbers are a fingerprint of the phase (related to the statistics of the excitations).

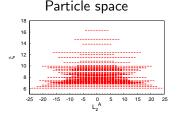
How can we probe the emergence of a topological phase numerically?

No local order parameter, a tool is thus needed!

- system in state $|\Psi
 angle$, cut the system in two parts A et B
- Reduced density matrix $\rho_A = \operatorname{Tr}_B |\Psi\rangle \langle \Psi| = \exp(-H_{\xi})$
- Entanglement spectrum = spectrum of H_{ξ}



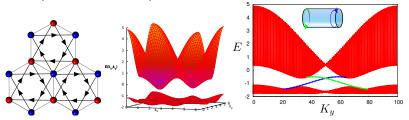
chiral mode: linear dispersion $\xi \propto K_A$ and state counting edge physics



Quasihole state counting \longrightarrow fingerprint of excitation statistics bulk physics FQHE without magnetic field: fractional Chern insulators

Chern insulators

• Quantum Hall Effect without magnetic field: Chern insulator (Haldane, PRL 88)



- Topological properties emerge from the band structure:
 - Berry connection and potential:

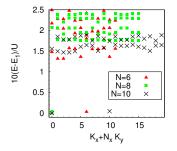
$$\mathbf{A}(\mathbf{k}) = i \langle u_{\mathbf{k}} | \nabla_{\mathbf{k}} | u_{\mathbf{k}}
angle \; ; \; F(\mathbf{k}) =
abla_{\mathbf{k}} imes \mathbf{A}(\mathbf{k})$$

- Chern number: $C_{1B} = \frac{1}{2\pi} \int_{BZ} F(\mathbf{k})$
- Gapped system with chiral edge modes and a band with non-zero Chern number

Fractional Chern insulators: Laughlin state at $\nu = 1/2$ when $C_{1B} = 1$

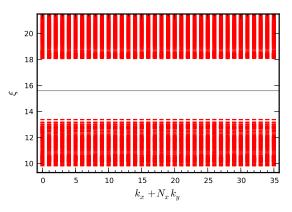
- finite system with $N_x N_y$ unit cells and N_B bosons
- partial filling of the lowest band: $\nu = \frac{N_B}{N_x N_v} = \frac{1}{2}$

2-body on-site Hubbard interaction (analogue of the delta interaction in real space): $H_{int} = U \sum_{i} : n_i^2$:



- correct groundstate degeneracy
- groundstates appear in the correct momentum sector
- Not enough to prove Laughlin physics
- can correspond to a breaking of translation symmetry

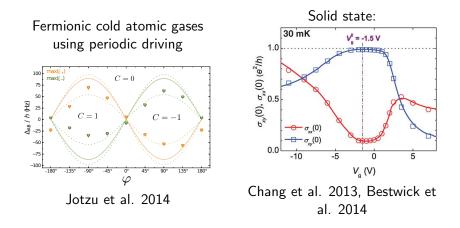
FCI: Laughlin state at $\nu = 1/2$ when $C_{1B} = 1$



- ES exhibits an entanglement gap
- Part below the gap has the same fingerprint as the Laughlin state
- Strongly model and interaction dependent

Experimental realization of Chern insulators

Many experimental developments in the last years



Creating a bosonic fractional quantum Hall liquid by pairing fermions

Pairing

What prevents the realization of fermionic FQH state in cold atomic systems?

- fermionic FQH states require longer-range interaction (difficult to engineer)
- solution: use atoms with strong dipolar interaction (experimentally less mastered)

idea: use pairing between spinful fermions to obtain bosonic molecules that would form bosonic FQH state

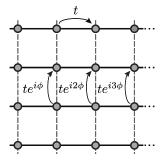
- Preparing spinful fermionic Mott insulator is now common practice (very recent measurements of anti-ferromagnetic correlations)
- Tuning the interaction to be attractive and strong can be done using Feschbach resonance
- Bose-condensation of such pairs was observed (Zwierlein *et al.*, PRL 2004)

Hofstadter model

Square lattice with a magnetic field:

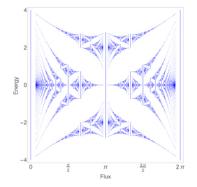
$$\mathcal{H} = -t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} \left(e^{2\pi i \alpha \mathbf{e}_{\mathbf{r}\mathbf{r}'}} c_{\mathbf{r}}^{\dagger} c_{\mathbf{r}'} + h.c. \right)$$

- $\bullet \ e_{rr'}$ gauge dependent and field independent
- $\phi = 2\pi \alpha$, α flux density



Hofstadter model

One-body spectrum given by the fractal Hofstadter butterfly



- \bullet At small flux density α one recovers the Landau levels
- This model was realized in two experiments recently (Aidelsburger *et al.*, Miyake *et al.*; PRLs 2013)

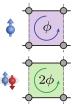
Pairing spinful fermions on Hofstadter model

Spinful Fermi-Hubbard model on a square lattice with a magnetic field and attractive interaction (U < 0):

$$\mathcal{H} = -t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle, \sigma = \uparrow, \downarrow} \left(e^{2\pi i \alpha e_{\mathbf{r}r'}} c_{\mathbf{r}, \sigma}^{\dagger} c_{\mathbf{r}', \sigma} + h.c. \right) + U \sum_{\mathbf{r}} n_{\mathbf{r}, \uparrow} n_{\mathbf{r}, \downarrow}$$

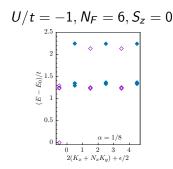
- At large |U| bosonic molecules form
- Half as many but feel twice the flux: $\nu_{BM} = \nu_F/4$
- $\nu_{F} = 2$ IQH state $\rightarrow \nu_{BM} = 1/2$ Laughlin state

Phase transition between a fermionic topological phase and a bosonic intrinsic topological phase (studied in the continum using effective Chern-Simmons theory by K.Yang *et al.* PRL 2008)



Phase transition: energy results

- Quantum numbers of the system: K_x, K_y and S_z
- in $S_z = 0$ sector, spin inversion symmetry: $\mathcal{P}_{SI} |\psi\rangle = \epsilon |\psi\rangle$ and $\epsilon = \pm 1$

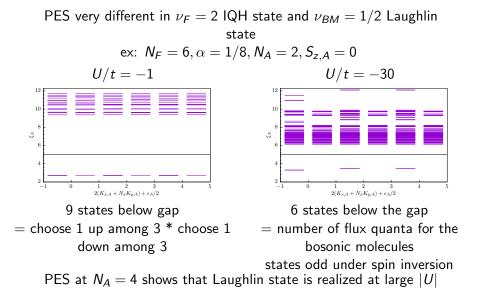


 $U/t = -30, N_F = 6, S_z = 0$

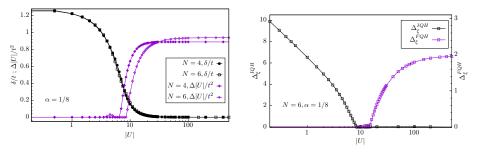
 $2(K_r + N_r K_u) + \epsilon/2$

- Unique groundstate
- low-energy states: even or odd under spin inversion
- quasi 2-fold degenerate groundstates for $\alpha \leq \frac{1}{8}$
- only states with $\epsilon = (-1)^{\frac{N_F}{2}}$

Phase transition: entanglement spectrum results



Monitoring the phase transition using both energy gap and the entanglement gap

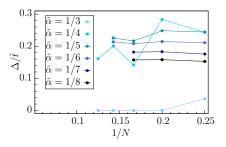


- Transition occurs around $U_c \approx -10t$ (for these system sizes)
- Typically the range of the 1-body spectrum
- Cannot access bigger system ($N = 8 \dim \sim 10^9$)
- Unfortunately we cannot tell more about the nature of the phase transition

Large |U| limit: Mapping to hardcore bosons

To access bigger system sizes we can map the bosonic molecules to hardcore bosons

$$\mathcal{H}_{\rm bos} = -\tilde{t} \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} \left(e^{2\pi i \tilde{\alpha} \mathbf{e}_{\mathbf{r}\mathbf{r}'}} a_{\mathbf{r}}^{\dagger} a_{\mathbf{r}'} + h.c. \right) \ ; \ \tilde{\mathbf{t}} = \frac{\mathbf{t}^2}{|\mathbf{U}|}, \ \tilde{\alpha} = \mathbf{2}\alpha$$



- Matches the fermionic computation
- PES also displays Laughlin state counting
- large fluctuations for $\tilde{\alpha}=1/4$
- $\tilde{\alpha} < 1/4$: gap is expected to be finite in the thermo. limit

While chiral topologically ordered phases have not been yet realized outside of 2DEG, recently a vast research effort to realize them on lattice systems and in cold atom gases

- Attractive interaction can also lead to FQHE effect!
- Pairing leads to a QPT between two topological phases of different nature
- First microscopic model where this effect is observed
- Experimental ingredients have been implemented

Open questions:

- Does this also occur in the continuum? Universality class?
- Is it possible to reach states beyond usual FQHE?

Thank you for your attention !