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Topological phases and cold atomic gases

Topological phases have been at the center of research in
condensed matter for almost forty years

Fundamental interests:

Beyond Laundau theory of phase transition: no local order
parameter, no symmetry breaking
Possible realization of anyonic statistics

Applications:

quantum memories
topologically protected quantum computing

Experimental progress:

Solid states physics: topological insulator, Weyl semi-metals,
Majorana fermions (?), Chern insulator
Cold atomic systems: realization of topological band structure

Interest of cold atomic systems:

More controlled, clean and tunable systems

Access to more observables, possibility of local manipulations



Outline

Introduction to the Fractional Quantum Hall Effect

FQHE without magnetic field: Fractional Chern Insulators

Creating a bosonic fractional quantum Hall liquid by pairing
fermions



Introduction to the Fractional Quantum Hall Effect



First topological phase: Integer Quantum Hall Effect
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Topological phases

81 - 83: Integer and Fractional Quantum Hall Effects
06 - 08: Topological Insulators

Different phases with the same symmetries

some physical quantities are related to a topological invariant
(∼ surface genus)

example: transverse conductance in IQHE (Chern Number)

Insensitive to local perturbations

Gapped systems in the bulk

Topological characteristic at the edge (edge modes)

3D TI:



Two flavors of topological phases

No topological order

Unique groundstate on every surface

No anyons in the bulk, but fractionalized edge excitations

Examples: Free fermion TI, AKLT

Topological order

Interactions needed

Groundstate degeneracy depends on the surface genus

Anyonic excitations in the bulk

Examples: FQHE, toric code



The fractional quantum Hall effect
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Partial filling: extensive groundstate
degeneracy

Only explanation: Interactions

Model wave function at filling ν = 1
m

ΨL(z1, ...zN) =
∏
i<j

(zi − zj)
me−

∑
i
|zi |2
4l2

Very good approximation of the ground state at ν = 1
3

Topological state: the degeneracy of the model state
depends on the surface genus (sphere: deg = 1 , torus: deg =
m )



Quantum Hall effects: Fermions vs Bosons

While only observed for fermions (so far!), QH physics can also
appear for bosons

IQHE can appear for bosons when ν is even and with
interaction

in the lowest Landau level: ΨB = ΨF/
∏

i<j(zi − zj)

filling ν−1B = ν−1F − 1

example: ν = 1/3 Laughlin state → ν = 1/2 Laughlin state

shorter range interaction to realize the bosonic state

example: Hm=3 =
∑

i ,j δ(zi − zj)∇δ(zi − zj) vs
Hm=2 =

∑
i ,j δ(zi − zj)

Main candidate experimental systems: Optical lattices, rotating
trap, Chern insulator



Quasihole state counting: generalized Pauli principle

Quasiholes: excitations with fractional charge and anyonic
statistic

The number of groundstates and quasihole states (i.e. zero
enery states of the parent Hamiltonians) can be predicted by a
generalization of the Pauli principle

Laughlin ν = 1/m: no more than 1 particle in m consecutive
orbitals (including periodic boundary conditions on the torus)

Example: Laughlin ν = 1/3 state with 8 flux quanta
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These numbers are a fingerprint of the phase (related to the
statistics of the excitations).



How can we probe the emergence of a topological phase
numerically?

No local order parameter, a tool is thus needed!

system in state |Ψ〉, cut the system in two parts A et B

Reduced density matrix ρA = TrB |Ψ〉 〈Ψ| = exp(−Hξ)
Entanglement spectrum = spectrum of Hξ

Real space
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FQHE without magnetic field: fractional Chern insulators



Chern insulators

Quantum Hall Effect without magnetic field: Chern insulator
(Haldane, PRL 88)
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Topological properties emerge from the band structure:
Berry connection and potential:

A(k) = i 〈uk| ∇k |uk〉 ; F (k) = ∇k × A(k)

Chern number: C1B = 1
2π

∫
BZ

F (k)

Gapped system with chiral edge modes and a band with
non-zero Chern number



Fractional Chern insulators: Laughlin state at ν = 1/2
when C1B = 1

finite system with NxNy unit cells and NB bosons

partial filling of the lowest band: ν = NB
NxNy

= 1
2

2-body on-site Hubbard interaction (analogue of the delta
interaction in real space): Hint = U

∑
i : n2i :

 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15

1
0
(E

-E
1
)/

U

Kx+Nx Ky

N=6
N=8

N=10

correct groundstate degeneracy

groundstates appear in the
correct momentum sector

Not enough to prove Laughlin
physics

can correspond to a breaking of
translation symmetry



FCI: Laughlin state at ν = 1/2 when C1B = 1
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ES exhibits an entanglement gap

Part below the gap has the same fingerprint as the Laughlin
state

Strongly model and interaction dependent



Experimental realization of Chern insulators

Many experimental developments in the last years

Fermionic cold atomic gases
using periodic driving
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Solid state:

Chang et al. 2013, Bestwick et
al. 2014



Creating a bosonic fractional quantum Hall liquid by pairing fermions



Pairing

What prevents the realization of fermionic FQH state in cold
atomic systems?

fermionic FQH states require longer-range interaction
(difficult to engineer)

solution: use atoms with strong dipolar interaction
(experimentally less mastered)

idea: use pairing between spinful fermions to obtain bosonic
molecules that would form bosonic FQH state

Preparing spinful fermionic Mott insulator is now common
practice (very recent measurements of anti-ferromagnetic
correlations)

Tuning the interaction to be attractive and strong can be
done using Feschbach resonance

Bose-condensation of such pairs was observed (Zwierlein et
al., PRL 2004)



Hofstadter model

Square lattice with a magnetic field:

H = −t
∑
〈r,r′〉

(
e2πiαerr′ c†r cr′ + h.c.

)

err′ gauge dependent and field independent

φ = 2πα, α flux density



Hofstadter model

One-body spectrum given by the fractal Hofstadter butterfly

At small flux density α one recovers the Landau levels

This model was realized in two experiments recently
(Aidelsburger et al., Miyake et al.; PRLs 2013)



Pairing spinful fermions on Hofstadter model

Spinful Fermi-Hubbard model on a square lattice with a magnetic
field and attractive interaction (U < 0):

H = −t
∑

〈r,r′〉,σ=↑,↓

(
e2πiαerr′ c†r,σcr′,σ + h.c .

)
+U

∑
r

nr,↑nr,↓

At large |U| bosonic molecules form

Half as many but feel twice the flux:
νBM = νF/4

νF = 2 IQH state → νBM = 1/2 Laughlin state

Phase transition between a fermionic topological phase and
a bosonic intrinsic topological phase (studied in the continum
using effective Chern-Simmons theory by K.Yang et al. PRL 2008)



Phase transition: energy results

Quantum numbers of the system: Kx ,Ky and Sz

in Sz = 0 sector, spin inversion symmetry: PSI |ψ〉 = ε |ψ〉
and ε = ±1

U/t = −1,NF = 6,Sz = 0
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Phase transition: entanglement spectrum results

PES very different in νF = 2 IQH state and νBM = 1/2 Laughlin
state

ex: NF = 6, α = 1/8,NA = 2, Sz,A = 0

U/t = −1
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= number of flux quanta for the

bosonic molecules
states odd under spin inversion

PES at NA = 4 shows that Laughlin state is realized at large |U|



Monitoring the phase transition using both energy gap and
the entanglement gap
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Transition occurs around Uc ≈ −10t (for these system sizes)

Typically the range of the 1-body spectrum

Cannot access bigger system (N = 8 dim ∼ 109)

Unfortunately we cannot tell more about the nature of the
phase transition



Large |U | limit: Mapping to hardcore bosons

To access bigger system sizes we can map the bosonic molecules to
hardcore bosons

Hbos = −t̃
∑
〈r,r′〉

(
e2πiα̃err′a†rar′ + h.c.

)
; t̃ =

t2

|U| , α̃ = 2α
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Matches the fermionic computation

PES also displays Laughlin state
counting

large fluctuations for α̃ = 1/4

α̃ < 1/4: gap is expected to be finite
in the thermo. limit



Conclusion

While chiral topologically ordered phases have not been yet
realized outside of 2DEG, recently a vast research effort to realize
them on lattice systems and in cold atom gases

Attractive interaction can also lead to FQHE effect!

Pairing leads to a QPT between two topological phases of
different nature

First microscopic model where this effect is observed

Experimental ingredients have been implemented

Open questions:

Does this also occur in the continuum? Universality class?

Is it possible to reach states beyond usual FQHE?

Thank you for your attention !


