

University of Zurich^{UZH}

Frank Schindler

Entanglement in Strongly Correlated Systems

Benasque 17/02/2017

Higher-order Topological Insulators

A paradigm for topological states of matter

 $\partial(\partial M) = \emptyset$ (the boundary of a boundary is empty)

... works for sufficiently smooth manifolds only.

Crystals have no smooth surface!

First-order topological insulators

2. Higher-order topological insulators

3 Models for second-order 3D TIs

Titus Neupert (U Zurich)

Ashley Cook (U Zurich)

B. Andrei Bernevig (U Princeton)

Maia G. Vergniory (Basque U)

1. First-order Topological Insulators

1D: Su-Schrieffer-Heeger Chain

Protected by chiral symmetry, \mathbb{Z} classification

2D: Quantum Hall Effect

Protected without symmetry, \mathbb{Z} classification

3D: Topological Insulator (TI)

Protected by time-reversal symmetry, \mathbb{Z}_2 classification

2. Higher-order Topological Insulators

Second-order 2D TI

Protected by mirror symmetries, $\mathbb{Z}_2 \times \mathbb{Z}_2$ classification

Third-order 3D TI

Protected by mirror symmetries, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ classification

Second-order 3D TI: TRB case

Protected by C_4T symmetry, \mathbb{Z}_2 classification

Z₂ **Classification**

Second-order 3D TI: TRS case

Protected by mirror symmetries, \mathbb{Z}_2 classification

Higher-order topological insulators

3. Models for second-order **3D.** Topological Insulators

Construction of a TRB second-order order 3D TI

Toy model with only C₄T in *z*-direction

$$H_4(\vec{k}) = \left(M + \sum_i \cos k_i\right) \tau_z \sigma_0 + \Delta_1 \sum_i \sin k_i \tau_y \sigma_i + \Delta_2 (\cos k_x - \cos k_y) \tau_x \sigma_0$$
3D TI
T, C₄ breaking term

C₄T is still preserved!

Construction of a TRB second-order order 3D TI

Spectrum in column geometry

 $\lambda(H_C)$

Nested entanglement spectrum

Nested entanglement spectrum

Define: entanglement spectrum of entanglement Hamiltonian

$$\rho_{\mathrm{e};A_{1}} = \mathrm{Tr}_{A_{2}} |\Psi_{\mathrm{e}}\rangle \langle \Psi_{\mathrm{e}}| \equiv \frac{1}{Z_{\mathrm{e}-\mathrm{e}}} e^{-H_{\mathrm{e}-\mathrm{e}}}$$

Take-Home Message

new paradigm for hierarchical topological phases protected by spatial symmetries

- edge modes protected by a 3D bulk invariant
- single edge has same properties as that of QSHE or QHE
- possibility of lossless transport in an intrinsically 3D system

