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Theorist’s dream:

e primordial non-gaussianity

s interactions in the inflationary sector

* baryon acoustic oscillations

5> dark energy equation of state

* evolution of perturbations

g neutrino mass

properties of dark matter (e.g. fifth force, WDM)
and dark energy (e.g. clustering)



Reality:
We have to understand dynamics of (A)CDM = dust
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The fundamental description is known (?): collisionless particles
interacting through gravity

Vlasov -- Poisson system for the distribution function f(x,v,1?)
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The fundamental description is known (?): collisionless particles
interacting through gravity

Vlasov -- Poisson system for the distribution function f(x,v,1?)

of of of 5 / 3
5 + v T 0 T 0, V<o T fd°v

* numerical solution: N-body simulations

+ valid up to arbitrary &

— costly, scanning over theory parameters is time-consuming,
non-standard models are hard to implement

e analytical perturbative methods at £ < 0.3 h™'Mpc

— are approximate

+ theoretical control of physical processes, flexibility
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Simplitying the problem

Newtonian approximation at [ < H 1 ~10* Mpc

DM particles move by uH ' ~ 10 Mpc

/

10~?
’ nonrelativistic fluid at 10 Mpc < [ < 10* Mpc

a4,
E—FV[UO
au /
E—FH(T)u—l— = —Vo

V2 = SO0 (r)HA(1)3,

treat as perturbations

vorticity decays at linear level s work with 0 x V - u
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Iwo perturbative schemes

Standard Perturbation Theory

statistics

>

Op, NL q Pnr|d,]

>

dynamics

5p, Lin q PLG[ép]

Time-Sliced Perturbation Theory

Valageas (2004)
Blas, Garny, Ivanov, S.S. (2015,2016)
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TSP1: time-sliced perturbation theory

Main ideas: Focus on equal-time correlators

Instead of evolving fields, evolve the
probability distribution function

Example: Consider a single variable with random initial
conditions

: A, .
b=Qu+ ) uT e ()
m=2 '

SPT: [ duy e TV (s Lolu] = 22

L'y
TSPT: / dip e T1¥iTly)2 Ll 7] =) 7) "



Two integrals must coincide

a equation for the “vertices”
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Two integrals must coincide

a equation for the “vertices”

d .
() <o

T

’ Fn — _nQFn — Z Cr;,nAan—m—kl =+ An+1
m=2

NW_J

contains only I, with n’ < n

The same logic for fields in space with the substitution:
integral ——> path integral



Generating functional for cosmological correlators

Z1J,7] :/[pap] exp{/‘r[(sp;TH/J(sp}

1 [16,(k)]? <=1 .
[ = ; ’PL((;‘) +§:35/Fn(7)5p

[' is an action of a (nonlocal) 3d Euclidean QFT;

7 --- an external parameter



Analogy with QFT cntd.

* For gaussian initial conditions the time dependence factorize

1 _
I' = I
D?(r)

e

effective coupling constant ¢°(7)

NB. For primordial NG
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* Neat diagrammatic technique

k= 2Py (k)
1 1 — K1 s 1 —
= —5(ki, ke) = — Ty (k1, ko, k3)
K g ks 9
2
(6,6,) = + C > + Q +
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Infrared problem of SP'T

Individual contributions diverge at small momenta if
Pr(k) < k™, n< -1

Al

overdensity is moved by an almost homogeneous flow,
accumulation of the effect with time

@

two overdensities will move (almost) identically,
cancellation in equal-time correlators



IR safety of 'TSPT

TSPT deals directly with equal-time correlators

All 1, are finite for soft momenta

Hm Uy (k1, ... ki €q1y v €Qn_y) < 00

e—0

’ no IR divergences in the individual loop diagrams

Related to the equivalence principle through Ward identities
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IR resummation
In TSPT large IR contributions can be systematically resummed

Step |:smooth + wiggly decomposition

Pr(k) = Prs(k) + Pro(k) o T(k) =T, (k) +Ty(k)

0.10 T T lllllll T T lllllll
0.05

0.00F

Py (K)/Ps(K)
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10
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Step |l: identify leading diagrams correcting the wiggly part

g daisies

dressed
2 k2 2 k2 2 k? 2 k2
9 12 g k2 v v

osc osc oscC oscC
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dressed k%32

dr [ : -
»2 = ?/0 dq Prs(q) (1 — jo(qrs) + 2j2(qrs))

N/

BAO wavelength

Baldauf et al. (2015)
Blas, Garny, Ilvanov, S.S. (2016)



Step lll: resummation
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2 _ AT
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hard and IR momenta BAO wavelength
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Step lll: resummation

dressed —k%x?

N1 = o /0@\9 dq Prs(q)(1 - jo(qgs)<j77“s))

separation between
hard and IR momenta BAO wavelength

Baldauf et al. (2015)
Blas, Garny, Ivanov, S.S. (2016)

NB. Yy ~ o, for kp > 1/rs ,but the integrand differs at small g
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Step 1V:add the smooth part

PLdressed _ PLs(k) 4 e_I{QE%PLw(k)

Step IV:use P, (L) instead of 7 (k) in all computations,
i.e. higher correlation functions and hard loop corrections
(with appropriate adjustment to avoid double-counting)

example:

BIR—resummed(kb kg, ]‘Cg) _ B(kl, kQ, kg)

dressed
PL l—>PL

Further developments:

* NLO IR corrections (shift of BAO peak)
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Sensitivity to the IR separation scale: LO vs NLO

IR resummed, z [O 1 adp IR resummed, z [O
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dependence on £ decreases with the loop order

Residual dependence gives an estimate of the error ~ 2% in the
BAO range



BAQO and the neutrino mass

Effect on linear PS:

>m, =0
>m,=0.15¢eV
: e >m,=0.3 eV
I\ e - ¥Ym,=0.6 eV
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At k> 0.05 h~'Mpc degenerate with the overall
normalization
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BAO and the neutrino mass

Non-linear effects remove the degeneracy

Linear CF NLO IR-resummed CF
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BAO and the neutrino mass

Non-linear effects remove the degeneracy
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Reason: they include very short modes that are not decribed
by fluid, but virialize and decouple
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Ultraviolet problem

Loop integrals diverge at large momenta if Pr (k) < k™, n > —1

Reason: they include very short modes that are not decribed
by fluid, but virialize and decouple

|) introduce a UV cutoff A

2) renormalize the interaction vertices to ensure that the
physical observables are A-independent

3) add counterterms into the equations of motion to account
for deviations from fluid description

g  EFT of LSS

Baumann, Nicolis, Senatore, Zaldarriaga (2010)
Carrasco, Hertzberg, Senatore (2012)
Pajer, Zaldarriaga (2013)

+ follow up’s
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Issues:

* proliferation of free parameters at higher
orders

e coefficients of the counterterms must have
non-local time-dependence for consistency of
the perturbative assumption

Abolhasani, Mirbabayi, Pajer (2015)

c20p |—>/ahf/ 2 (t, ') 6,(t") et

* treatment of stochastic terms is complicated
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UV renormalization in TSPT

Introduce a cutoff:
)

P(k), k<A

P(k) — PME) =
(k) — () <Q k> A

\
I, — I

Wilsonian renormalization group:
dl'
dA\

Boundary conditions = counterterms (', encapsulating the

effects of short modes

= F,[P* T4



UV renormalization in TSPT

+ C,,({k},7) local in time by construction

+ clear separation between PR and Pl counterterms

>k
+><>+ +>§

* stochastic contributions are at the same footing as viscous
ones



Structure of counterterms

a) Use TEFT ’ Ca(c3) , 03(C§761,C2,C3)

A
b) At A > k the RG egs. factorize: d;—A” = Fr({k}) B, (A)

\

O((k/knrL)?)
’ It is mathematically consistent to choose
= Fu({k}) CP(7)

e sufficient to cancel the UV divergences
* stable under RG (absorbs the cutoff dependence )

Reduces the number of free parameters by a factor of 3
for 1-loop bispectrum, more for higher orders



Fitting the bispectrum
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another reason for reduction: all EFT contributions into

C5(ky1, ko, ks3) are highly correlated
cf. Bertolini, Solon (2016)

a sufficient to use a single shape in fitting the data



cf. Bertolini, Solon (2016)

a sufficient to use a single shape in fitting the data
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formally g2 <1 ’ use semlcla§5|cal expansion (saddle-point
approximation, steepest descent)
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Summary and Outlook

perturbative methods are essential to fully exploit the
potential of LSS surveys (m,, fyr,, properties of DM and DE)

time-sliced perturbation theory (TSPT) casts the theory of
cosmic structure in the language of (3d Euclidean) QFT

clean derivation of known results and new insights
(diagrammatic resummation of IR-enhanced contributions into
BAO, UV renormalization a la Wilsonian RG, large deviation
statistics as semiclassical approximation)



Summary and Outlook

@ perturbative methods are essential to fully exploit the
potential of LSS surveys (m,, fyr,, properties of DM and DE)

©

time-sliced perturbation theory (TSPT) casts the theory of
cosmic structure in the language of (3d Euclidean) QFT

©

clean derivation of known results and new insights
(diagrammatic resummation of IR-enhanced contributions into
BAO, UV renormalization a la Wilsonian RG, large deviation
statistics as semiclassical approximation)

©

classification of UV counterterms

% inclusion of “astrophysical” effects (biases, redshift space
distortion, baryons)

©

comparison with the data, searches for new physics



