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Thermodynamics of Quantum Systems

“I have been very critical of the field because there is 
far too much theory and not enough experiment,” says 
quantum physicist Peter Hänggi



Thermodynamics of Quantum Systems
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Colloquium: Quantum fluctuation relations: Foundations and applications , M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).

Familiar notions of work (and heat) need re-examined when dealing with 
quantum systems.

How can we access/study the work for quantum systems?

The characteristic function allows us precisely this

Work is not an observable! For quantum systems it has a probability 
distribution

Fluctuation theorems: Work is not an observable , P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007).

Measuring the Characteristic Function of the Work Distribution , L. Mazzola, G. De Chiara, M. Paternostro, Phys. Rev. Lett. 110, 230602 (2013).
Extracting Quantum Work Statistics and Fluctuation Theorems by Single-Qubit Interferometry , R. Dorner et al, Phys. Rev. Lett. 110, 230601 (2013).
Experimental Reconstruction of Work Distribution and Study of Fluctuation Relations in a Closed Quantum System , T. B. Batalhão et al, Phys. Rev. 
Lett. 113, 140601 (2014).

Cold atoms offer a uniquely versatile theoretical & experimental play ground



Thermodynamics of Cold Atom Systems
….but thermodynamics…..with no temperature??

For a sudden change in the Hamiltonian parameters

From which we can determine the associated ‘quantum’ work

and define the irreversible work (equivalent to the irreversible entropy 
production for thermal systems)
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Non-Equilibrium Thermodynamics of Harmonically Trapped Bosons , M. Á. García-March, T. Fogarty, SC, Th. Busch, M. Paternostro, New J. Phys. 18, 103035 (2016).
Statistics of the work distribution for a quenched Fermi gas , A. Sindona, J. Goold, N. Lo Gullo, F. Plastina, New J. Phys. 16, 045013 (2014).

We examine the energetics of quantum systems within the framework of 
finite time thermodynamics



Thermodynamics of Cold Atom Systems

Notice the characteristic function is directly related to another well studied 
quantity: the Loschmidt echo
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Non-Equilibrium Thermodynamics of Harmonically Trapped Bosons , M. Á. García-March, T. Fogarty, SC, Th. Busch, M. Paternostro, New J. Phys. 18, 103035 (2016).
Statistics of the work distribution for a quenched Fermi gas , A. Sindona, J. Goold, N. Lo Gullo, F. Plastina, New J. Phys. 16, 045013 (2014).

These figures of merit can be readily studied for cold atomic systems

For (harmonically) trapped system we can imagine varying the Hamiltonian 
parameters via Feshbach resonances



(Quantum) Otto Cycle

1. A → B: Adiabatic (isentropic) compression. The working medium is 
compressed. This stroke involves both volume and temperature changes, while 
the entropy remains constant.  

2. B → C: Isochoric heating. The volume of the working medium is fixed, while 
the temperature is increased.  
 
3. C → D: Adiabatic (isentropic) expansion. The power stroke, when useful 
work is extracted from the engine. Again this stroke involves both volume and 
temperature changes, at fixed entropy.  
 
4. D → A: Isochoric cooling. The working medium is cooled at a fixed volume 
and returned to its initial state, ready to begin the cycle again. 

Quantum thermodynamic cycles and quantum heat engines, H.T. Quan, Y.-x. Liu, C. P. Sun, F. Nori, Phys. Rev. E 76. 031105 (2007).

The Otto cycle is an ideal setting to examine the thermodynamics of quantum 
systems. It comprises of 4 strokes:



(Quantum) Otto Cycle
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Quantum thermodynamic cycles and quantum heat engines, H.T. Quan, Y.-x. Liu, C. P. Sun, F. Nori, Phys. Rev. E 76. 031105 (2007).



(Quantum) Otto Cycle

The working substance is almost never in 
equilibrium

More bang for your buck: Super-adiabatic quantum engines, A. Del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014).

Allows for a clear distinction between when 
work is done/to or heat is added/removed from 
the working substance

A significant difference between classical and quantum Otto cycles arises from 
the notion of adiabaticity

For cold atoms we also have the issue of how to realise the thermalisation 
strokes if we insist on the working substance remaining in its ground state?

Quantum thermodynamic cycles and quantum heat engines, H.T. Quan, Y.-x. Liu, C. P. Sun, F. Nori, Phys. Rev. E 76. 031105 (2007).
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The fragility of quantum systems necessitates we examine how to coherently 
control them



A Non-Linear Feshbach Engine  - Basics
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The basic set up has been examined for the linear case. Our interest follows 2 
basic questions: 

1. Can we design a quantum Otto cycle for cold atoms, i.e. without 
the need for an explicit temperature dependence? 
2. Are there any advantages to using non-linear systems?
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We consider the GPE and its associated free-space solution

The associated energy is then

More bang for your buck: Super-adiabatic quantum engines, A. Del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014).
An efficient nonlinear Feshbach engine, J. Li, T. Fogarty, SC, X. Chen, Th. Busch, New J. Phys. 20, 015005 (2018).



A Feshbach Engine  - Basics
The adiabatic strokes are realised by varying the non-linear interaction strength

We model thermalisation by adding/removing atoms from the soliton



A Feshbach Engine
Boosting Power by STAs

More bang for your buck: Super-adiabatic quantum engines, A. Del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014).
Shortcut to adiabatic control of soliton matter waves by tunable interaction, J. Li, K. Sun, X. Chen, Sci. Rep. 6, 38258 (2016).

We use shortcuts to adiabaticity (STA) to design a control ramp that achieves 
high final state fidelities with the target state for a given ramp duration

An efficient nonlinear Feshbach engine, J. Li, T. Fogarty, SC, X. Chen, Th. Busch, New J. Phys. 20, 015005 (2018).

Adiabatic Ramp

STA

For comparison we will also use the “adiabatic” ramp

Nevertheless our scheme leads to some irreversible work being generated

Free Energy 
(adiabatic work)



A Feshbach Engine
Fidelity and Irreversibility

Focusing on a single adiabatic stroke we see that the STA is always effective 
and larger non-linearity (but same overall change in energy!) allows for better 
overall performance
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RED: Rescaled Adiabatic Ramp;     BLACK: Using STA;     SOLID: Strong nonlinear strength;      DASHED: Weak nonlinear strength



A Feshbach Engine
Fidelity and Irreversibility

Combining the shortcut and larger non-linear 
interaction strength greatly reduces the time 
required to perform the stroke and still achieve 
(close to) the target state

The utility of the larger non-linear interaction 
strength is due to its affect on the energy 
spectrum of the matter wave

The same basic features emerge for both ‘compression’ and ‘expansion’ 
stroke

Combining the two STA assisted strokes with the particle addition/subtraction 
strokes we can examine the overall performance of our STA assisted 
Feshbach-Atom Engine



A Feshbach Engine 
Power and Efficiency
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RED: Rescaled Adiabatic Ramp;     BLACK: Using STA;     SOLID: Strong nonlinear strength;      DASHED: Weak nonlinear strength

We assume the atom addition/subtraction strokes are much quicker than the 
adiabats (a common simplification)

From the textbook definitions of efficiency and power we again achieve 
better overall performance by exploiting both the STA and nonlinearities



The thermodynamic cost of quantum control

Energy efficient quantum machines, O. Abah, E. Lutz, EPL 118, 40005 (2017).
Energy consumption for shortcuts to adiabaticity, E. Torrontegui, I. Lizuain, S. González-Resines, A. Tobalina, A. Ruschhaupt, R. Kosloff, J. G. Muga, Phys. Rev. A 96, 022133 (2017).

More bang for your buck: Super-adiabatic quantum engines, A. Del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014).
Cost of counterdiabatic driving and work output, Y Zheng, SC, G De Chiara, D Polettio, Physical Review A 94, 042132 (2016).

The quantum harmonic Otto cycle, R. Kosloff, Y. Rezek, Entropy 19, 136 (2017).
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But quantum control isn’t for free!

A currently active research area is in defining the (thermodynamic/energetic) 
cost of coherent control of quantum systems 

All proposed measures nevertheless share some common traits, in particular 
most are related to the average/variance of the energy using the STA

Universal Work Fluctuations During Shortcuts to Adiabaticity by Counterdiabatic Driving, K. Funo, J.Zhang, C.Chatou, K.Kim, M.Ueda, A. del Campo, Phys. Rev. Lett. 118, 100602 (2017).
Trade-Off Between Speed and Cost in Shortcuts to Adiabaticity, SC, S. Deffner, Phys. Rev. Lett. 118, 100601 (2017).

We will define the cost of via

(it could be viewed as a ‘catalyst’ as it is not dissipated - nevertheless it is 
still a cost that must be paid at some point)



A Feshbach Engine 
Power and Efficiency

⌘
cost

= � hW
C

i+ hW
E

i
hQ

N�i+ hE
STA

i
C

+ hE
STA

i
E

P
cost

= �hW
C

i+ hW
E

i � hE
STA

i
C

� hE
STA

i
E

⌧

RED: Rescaled Adiabatic Ramp;     BLACK: Using STA;     THICK: without cost;      THIN: with cost

We can modify the definitions of efficiency and power to take into account 
the additional energetic resources necessary to realise our cycle

Even in this case we still find that the STA assisted cycle performs better



The take home message(s)

Cold atomic systems are ideal test-beds for non-equilibrium quantum thermodynamics

Prototypical heat engines can be realised using cold atomic systems as working 
substances

The performance of cyclic thermodynamic 
processes can be enhanced using state-of-the-art 
control techniques

Nonlinearities are shown to be a potentially rich 
resource in further boosting the performance of 
these processes

Even when the additional resources required to 
achieve high level control are taken into account, 
realised cycle is still efficient

An efficient nonlinear Feshbach engine  
J. Li, T. Fogarty, SC, X. Chen, Th. Busch 

New J. Phys. 20, 015005 (2018).
Non-Equilibrium Thermodynamics of Harmonically Trapped Bosons 

M. Á. García-March, T. Fogarty, SC, Th. Busch, M. Paternostro,  
New J. Phys. 18, 103035 (2016).
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