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 Hard coefficient functions in kt factorization:   
Kotko, KK, van Hameren 2013, 
KK, Salwa, van Hameren 2013

One consider embedding off-shell amplitude
in on-shell and introduces eikonal lines



Kotko, KK, van Hameren 2013, 
KK, Salwa, van Hameren 2013

Effective action based approach
Lipatov 95, Lipatov, Vyazovsky 2000

Gauge link based derivation
Kotko'14

Agrees with:

Hard coefficient functions in HEF:   



  

So far we can 
USE higher order corrections to BFKL/BK/JIMWLK
but: 
What about evolution of quarks? Can one get in some limit complete DGLAP at least an  LO?

Use CCFM includes “1/z” and “1/(1-z)” terms of splitting function, depends on hard scale
but:
does not allow to account for finite terms like “z(1-z)”. Jumps from low z to large z. 
Framework limited only to gluons. Limited description of data.

Framework by Balitsky and Tarasov: large “z”, small “z”, moderate “z”, Sudakov, nonlinearity,
spin dependence. The same kinematics in the kernel as in our approach.
but:
limited so far to gluons only. Not clear how to deal with it numerically

Kimber,Martin, Ryskin, Watt or “Parton Branching” Jung at. al  1804.11152 provides full 
set of TMD pdfs. 
but: 
DGLAP based only integral version fully consistent. They should be at least refitted.

Ciafaloni,Colferai,Staśto,Salam  JHEP 0708:046,2007  → anzatz for system of 
equations unifying DGLAP and BFKL.
but
quark splitting functions are kt independent. 

 
 



Example- dijets- azimuthal angle correlations – 
central region  

M. Bury, A. van Hameren, H. Jung, KK, S. Sapeta, M. Serino ‘17

Simulation in
KaTie+ CASCADE

KMR
pdfs used
unintegrated
DGLAP based

Together with 
off-shell ME

as obtained
from KaTie
ME generator 
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Example- Z+jet- pT of Z  

Simulation in
KaTie+ CASCADE

Parton Branching
pdfs used
unintegrated
DGLAP based

Together with 
off-shell ME
as obtained
from

KaTie
ME generator 

 van Hameren, Deak, Jung, Kusina, Kutak, M. Serino  in preparation



  

The goal

● go beyond DGLAP and BFKL by generalized splitting kernel

● coverage of all  “z” regions

● extend evolution towards large x

● reproduce collinear limit (DGLAP)

● reproduce BFKL in low “z” limit

● kT-dependent splitting functions

● in longer term goal: to describe large class of exclusive processes 

 

 

We aim at will achieving this goals by using Curci-Furmanski-Petronzio (CFP) and 
Catani-Hautmann (CH) formalisms.

Curci, Furmanski, Petronzio Nucl. Phys. B175 (1980) 27

Catani, Hautmann NPB427 (1994) 475524



  

Curci-Furmanski-Petronzio method
Factorization based on generalized ladder expansion (in terms of Two Particle Irreducible 
(2PI) kernels)

formulation in axial gauge (ladder diagrams)

Ko 2PI kernels connected only by convolution in x this is achieved by introducing 
appropriate projector operators 

Process independent
transition function 
linked to splitting 
kernel

Renormalized and 
finite hard matrix 
element

Co hard scattering coefficient function

the leading-twist contribution 
to the inclusive cross section

How does it work….



  

Curci-Furmanski-Petronzio 
- factorization

finite (M – pole part is 
finite)

^
factorization
convolution only
 in “x”

the projector performs
 integral over phase 
space  of “k” and  
extracts  poles  

notation from CFP paper
they studied Pqq

ΓΓ

Co hard scattering 
     coefficient function

Ko 2PI kernels

pole part
spin part



  

Curci-Furmanski-Petronzio 
- factorization

finite (M – pole part is 
finite)

^
factorization
convolution only
 in “x”

the projector performs
 integral over phase 
space  of “k” and  
extracts  poles  

notation from CFP paper
they studied Pqq

ΓΓ

Co hard scattering 
     coefficient function

Ko 2PI kernels

pole part
spin part



  

Curci-Furmanski-Petronzio 
- splitting function

The CFP method applied to construct splitting functions 

The method can be used to prove factorization and to derive evolution equations

● incoming propagators amputated

● contains propagator of outgoing parton 
+ incoming on-shell



  

Generalization to HEF kinematics

We will define and constrain splitting functions by requiring:

● gauge invariance/current conservation of vertices

● collinear limit (LO)

● HEF limit (LO)
 

Catani, Hautmann NPB427 (1994) 475524

F. Hautmann, M. Hentschinski, H. Jung
Nucl.Phys. B865 (2012) 54-66

ordering in “-” components



  

Generalization to HEF kinematics

Kernel obtained by Catani and Hautmann  

One needs:

● appropriate projector operators

● generalize QCD vertices (can be obtained form Lipatov effective action or 
equivalently by spin helicity method)

O. Gituliar, M. Hentschinski, K.K; JHEP 1601 (2016) 181 
Hentschinski, Kusina, KK, Serino ‘17



  

CH kernel
Application of the method  to Pqg

Usage of axial gauge. The outgoing projector is the same for quark  as in the 
original CFP

The projector for incoming gluons obtained from  
  

k

q



  

Vertices – example derivation

k

p’

q

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174 auxiliary quarks

k

q

current conservation w.r.t outgoing gluon
q → general kinematics
k →HEF 



  

Full set of projectors
Constrained by Ward identities and appropriate limits  the splitting functions should
have correct DGLAP and BFKL limits we have the following projectors

k

p’

q



  

Full set of vertices

remark: can be obtained 
from Lipatov effective action

Obtained using spinor helicity methods

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174 

Van Hameren, Kotko, Kutak, JHEP 1301 (2013) 078



  

Example calculation of splitting 
function: Pgg case

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174 



  

Results 

For sake of presentation: only angular averaged kernels

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174 



  

Kinematic limits Pgg – DGLAP BFKL  

DGLAP limit: 

with this variable one can disentangle singularities

BFKL limit:

k

q

p’=k-q



  

Kinematic limits Pgg - CCFM

CCFM limit: k

q

p’=k-q

related to angle



  

Towards evolution equation

● For now we have real part emissions of the splitting functions. 

● The non diagonal splitting functions do not have virtual contribution at the LO.

● They are divergent when p’ → 0. The diagonal once have virtual contributions.

● However, the distribution of gluons gets contribution from quarks…. 

● We can consider the following model 



  

Towards evolution equation

Real part of Pqq to be complemented by virtual corrections → can 
expect cancellations of singularities but Pgq is divergent

add quark induced contribution

For gluonic part we use low z limit part of Pgg i.e. LO BFKL equation



  

Towards evolution equation-
BFKL with Regge form factor 

  Use simplified Pgg kernel i.e. BFKL limit. Introduce phase space slicing parameter 
to separate resolved and unresolved emissions

Stable in μ → 0 

Using Mellin transforms and some algebra we get



  

Towards evolution equation  

For quark part the crucial difference: no virtual corrections

The equation for gluon reads:

M. Hentschinski, A. Kusina, K.K; Phys. Rev. D 94, 114013 (2016) 

where



  

Towards evolution equation - 
stability

Resummation of cuts of μ → region 



  

Conclusions and outlook

● We have applied CFP and CH technique to calculate real emissions splitting functions

● We used the splitting functions to construct model equation for gluon density
receiving contributions from quarks

● We found that found that resummation of virtual contributions to Pgg at low x
helps with treatment of  singularity of Pgq splitting function

● Virtual contributions to Pgg and Pqq should be computed using 
the same formalism

● Evolution variable: will come after getting full kernels

● The full set of evolution equations

● Relation to operator definition of TMD, address nonlinearities  

● Solution 

● Monte Carlo implementation
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