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Outline

Introduction: long-range rapidity correlations.

* The problem. Where are the odd harmonics?

* An aside: Single inclusive gluon production in saturation physics:
first saturation correction in the projectile

* Solution: odd harmonics are generated by the higher-order
saturation corrections in the interactions with the projectile and
the target. At the very least, the odd harmonics require three
scatterings in the projectile and three scatterings in the target.



Introduction: Long-range rapidity correlations

YK, D. Wertepny,
arXiv:1212.1195 [hep-ph], arXiv:1310.6701 [hep-ph]



Ridge in heavy ion collisions

Heavy ion collisions, along with high-multiplicity p+p and p+A collisions,
are known to have long-range rapidity correlations, known as ‘the ridge’:

Au+Au central
3<p"9<4 GeV/c
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Origin of rapidity correlations

Causality demands that long-range

rapidity correlations originate at very
early times (cf. explanation of the
CMB homogeneity in the Universe)

Gavin, McLerran, Moschelli *08;
Dumitru, Gelis, McLerran, Venugopalan '08.



Glasma graphs

Generate back-to-back and
near-side azimuthal correlations.

Dumitru, Gelis, McLerran, Venugopalan ‘08.



Glasma graphs in LC gauge
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Glasma graphs are one of the many rescattering diagrams when
two nucleons with a gluon each scatter on a nuclear target.



What to calculate?

* To systematically include Glasma graphs in the CGC formalism
it would be great to solve the two-gluon inclusive production
problem in the MV model, that is, including multiple
rescatterings in both nuclei to all orders (the two produced
gluons only talk to each other through sources):
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A very hard problem!



Heavy-Light lon Collisions
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Little steps for the little feet: consider multiple rescatterings
only in one of the two nuclei.



Two-gluon production

* We want to calculate two gluon production in A,;+A, collisions
with 1 << A, << A, resumming all powers of

o Aé/?’ ~ 1 while 2 Ai/g <1

(multiple rescatterings in the target nucleus)

projectile

Ay

* The gluons come from different nucleons in the projectile
nucleus as A;>>1 and this is enhanced compared to emission
from the same nucleon.



Applicability region
The saturation scales of the two nuclei are very different:

AQC’D < Qsl < QSQ

We are working above the saturation scale of the smaller

nucleus: kT > Qsl

We thus sum all multiple rescatterings in the larger nucleus,
Q,,/k;~1, staying at the lowest non-trivial order in Q,/k; <<1.

Multiple interactions with the same nucleon in either nucleus
are suppressed by A,qp/k; <<<1.



(i) Single gluon production in pA



Single gluon production in pA

Model the proton by a single quark (can be easily improved upon).
The diagrams are shown below (Yu.K., A. Mueller ’97):

b
|

Y

00
>
n=>0

gt

Y

S

Multiple rescatterings are denoted by a single dashed line:

11

~ [Tlandas

=%...

3
El
g —

| S

13



Single gluon production in pA

The gluon production cross section can be readily written as (U = Wilson line
in adjoint representation, represents gluon interactions with the target)

A2
doP ozsC'F/dede =ik (x—y) x—b y-b
Y 7'(' X — y —
d?k dy d?b 44 x —b|? | b|?

1
N2 1

1
X < TT[UXU;] — TT[UXU,i] —

NC2 7 T?“[UbU;] + 1>

N2 1



Forward dipole amplitude

* The eikonal quark propagator is given by the Wilson line

o

V(z)=Pexp |ig /daﬁA‘(azﬂx_:O,g)

— 00

with the light cone coordinates xi —

 The quark dipole scattering amplitude is

Nlaym) =1 = 3 (b [Va) Vi)

Hh-u




(ii)) Two-gluon production
in heavy-light ion collisions



The process
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Solid horizontal lines = quarks in the incoming nucleons.
Dashed vertical line = interaction with the target.
Dotted vertical lines = energy denominators (ignore).
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Amplitude squared

This contribution to two-gluon production looks like one-gluon production
squared, with the target averaging applied to both.
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Amplltude squared

‘ a@g | ?@% %% These contributions to two-gluon
| | | | | | production contain cross-talk

| | | | | | between the emissions from
different nucleons.
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Two-gluon production cross section

e “Squaring” the single gluon production cross section yields

do _ aiC%
Phydy Phydyy | 1678
Xx1—b1  yi—bi xo—-by yy—by
x1 —b1[? [y1 —bi1[? [x2 —b2* [y2 — ba|?

/d2B d?by d%by Ty (B — by) T1 (B — by) d?ay d2yy d?aq dPys e K Ga—y1)—ike-(xa—y2)

i t
X <<Nc2 — Tr(Ux, Uy, ] — NZ o1 Tr[Ux, U] — N7 1 Tr[UblU;El] + 1)
L T 1 T 1 ;
% NCQ —1 Tr[UX?UYz] o ch 1 TT[UX2Ub2] - NCQ 1 TT[UbQUyQ] + 1

W w (cf. Kovner & Lublinsky, ‘12)
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Two-gluon production cross section

 The “crossed” diagrams give

dO-CTOSSQ 1
d2k1dy1d2k;idy2 = 2027 )2 /d2B d?by d*by T (B — by) T1 (B — by) d*xy d*yy d*xo dys

< [e—i ki (x1—y2)—i ka-(x2—y1) + et ki (x1—y2)+i ka-(x2—y1)

16 a2 Cp x1—by y2 — by  xo— by y1 — by
w2 2N, |x1 —b1]|? |y2 —bo|? |x2 —bs|? |y1 —by]?

X

X [Q(X17Y17X27Y2) o Q(X17y17x27b2) _ Q(Xlaylab27YQ) + SG(X17Y1) - Q(X17b17X27Y2)
+ Q(X1,b1,X2,b2) + Q(X17b1,b2,y’2) - SG<X17b1) - Q(b1,Y1,X2,Y2) + Q(b17Y17X27b2)

+ Q<b17Y17b2aY2> - SG(b1,Y1) + SG(X2,Y2) - SG(X27b2) - SG(b27YQ) + 1]

B T T S TR TR TR
TN A T S e, ey
P = Y% G Shl S W
ST R TR W




Two-gluon production cross section

 The “crossed” diagrams give

do—CTOSS@ 1
d2k1dy1d2k;idyz = 2027 )2 /d2B d?by d*by T (B — by) T1 (B — by) d*xy d*yy d*xo dys

< [e—i ki (x1—y2)—i ka-(x2—y1) + et ki (x1—y2)+i ka-(x2—y1)

16 a2 Cp x1—by y2 — by x5 — by y1 — by
w2 2N, |x1 —b1]? |y2 —b2|? |x2 —b2?2  |y1 —by|?

X

X [Q(X17Y17X27Y2) T Q(X17y17x27b2) _ Q(Xlay17b27YQ) + SG(X17Y1) - Q(X17b17X27Y2)
+ Q(X1,b1,X2,b2) + Q(X1ab1,b2,}’2) - SG(Xlabl) - Q(b1,Y1,X2,Y2) + Q(b17Y17X27b2>

+ Q(bl,YLbz,Yz) - SG(b1,Y1) + SG(X2,Y2) - SG(X27b2) - SG(b27Y2) + 1]

 We introduced the adjoint color-dipole and color quadrupole amplitudes:

SG (X17 X2, y) = <TT[UX1 U}tg]>

N2 —1

C

1
N2 —1

C

(Tr[Ux, UL Ug, UL T)

Q(Xla X2,X3, X4) =



Two-gluon production: properties

2 12
do _a;Cp

= d2B d2by d%by Ty (B — by) T1(B — by) d2x; d2y; d?xe d2yq e k1 (x1-y1)—i ka:(x2—y2)
dzkldyld%gdyg 1678 / 1 2 1( 1) 1( 2) T14°Y1 0 T20 Y2 €
% x1 — by ) y1— by X2 — ba ] y2 — bo
|x1 —b1[? [y1 —b1|* [x2 —ba? [ys —byf?
1 1 1
X <<N2 — TriUs, U] — T Tr(Ux, Uy | — T TriUs, U ] + 1>

c

1 1 1
i i i
X <N02 — TrlUx,U],] — NZ -1 TrlUx, U}, — T 1 Tr[Uv,U,,] + 1>>

Cc

* |If we expand the interaction with the target to the lowest non-trivial order,
one reproduced the contribution of the ‘glasma’ graphs:

_ a; 20 72 _ > Qso(b) d’l 1 1
LO‘4w4/dB“[T1(B Pl e | o [<k1—1>2<k2+1>2+<k1—1>2<k2—1>2]

/A /
away-side correlations near-side correlations

1 1

Y Y

(k1 + k2)? (k1 — k2)?

(cf. Dumitru, Gelis, McLerran, Venugopalan '08)

dJCOTT

d?k1dy d?kody;




Two-gluon production: properties

* Crossed diagrams at lowest

nontrivial order
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Stronger correlations!

(k1 + ko)?
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HBT diagrams

There is another contribution coming from the “crossed” diagrams
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HBT diagrams

* They give HBT correlations (with R,, . =0 due to Lorentz contraction)

ky+ U

* Just like the standard HBT correlations
‘\Ijl(kl) \Pg(kg) -+ \Ill(kg) \Ifg(kl)|2 — \Ifl(kl) \Ifg(kg) \If{(kg) \Ilg(kl) +c.c.+ ...

* Possibly fragmentation would break phase coherence making these
perturbative HBT correlations not observable.

26



Back-to-back HBT?

Note that all our formulas are symmetric under

k2 — —kQ

Therefore, the HBT correlation is accompanied by the
identical back-to-back HBT correlation

~ (52(1{1 —+ kg)

Note again that this correlation may be destroyed in
hadronization.



Two-gluon production: properties

do a2 C% : : ~
= =2 d°B d?by d*by Ty (B — by) Ty (B — by) day d*yy dPwy dPyy e K-y =ik (e oy,
A2k dy d2kadys 16 18 / 1 d”ba T1 ( 1) T ( o) d*x1 d*y1 d" w2 d ya €
Xx1—b1  yi—bi  Xo—by ys—by

1x1 — by |2 ' ly1 — b1]? [x2 — bao|? ' ly2 — bao|?

X

1
N2 1

1 1
T T

C

TrlUs,UJ ] + 1)

1 1 1
T
X (Ng — Tr(Ux,UJ] — N TrlUx, U] — N Tr(Us,US.] + 1>>

* The cross section is symmetric under (ditto for the “crossed” term)

k1 < k2 (just coordinate relabeling)
ko — —ks as A'r [UX U;] =1'r [Uy U)H

* Hence the correlations generate only even azimuthal harmonics

~ cos2n (p1 — ¢2)



Correlation function

May look like this (a toy model; two particles far separated in rapidity,
jets subtracted, pA and AA):

C(Ad)
10 A(I)
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I I I I I I I I I I | I I I I I I I I I I | I I A ¢
0.5 1.0 1.5 20 25 30

Dumitru, Gelis, McLerran, Venugopalan '08; Kovner, Lublinsky ‘10;
Yu.K., D. Wertepny ‘12; Lappi, Srednyak, and Venugopalan ‘09
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LHC p+Pb data from ALICE

0.88—p-Pb |'s, = 5.02 TeV -  Data
~ (0-20%) - (60-100%) a, + a, CoS(2A0) + a, cos(3A9)

o
Lo
o

— 2<p_ . <4GeVic e a, + a, cos(2A¢)
-~ 1<p e <2 GeV/c Baseline for yield extraction
T,assoc

+ o HIJING shifted
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© o o
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o
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These are high-multiplicity collisions: it is possible that quark-gluon plasma is created
in those collisions, with the hydrodynamics contributing to these correlations.

Saturation approach is lacking the odd harmonics, like cos (3 Ad) , etc. Can they be
generated by corrections to the leading-order CGC calculation?



The Problem:
Can we obtain odd harmonics in
the saturation approach?



The Problem

Can we get odd harmonics in the saturation approach?

Several people believed a phase difference between the amplitude and
the cc amplitude is needed for odd harmonics — more on this later.
(e.g. Kovner, Lublinsky).

| thought the solution was in calculating higher-order corrections to the
classical gluon production picture.

This is how one gets the single transverse spin asymmetry.



Single Transverse Spin Asymmetry

* Consider transversely polarized proton scattering on an
unpolarized proton or nucleus.

p(Z)+p— h(nE, 7% . )+ X

K -/

Right

* Single Transverse Spin Asymmetry (STSA) is defined by

do" dot do™’ do'

A]\[(k) _ d’kdy  d?kdy _ d2kdy (k) T d2k_dy(_k) _ d(AO‘)
o dO'T do'\l/ o dO'T dO'T p—

d?k dy + d2k dy d?k dy (k) + Wdy(_k) 2daunp

33



STSA in SIDIS

e STSA arises from the interference diagrams between Born-level and the
one-rescattering graphs:

A § Y
— — — + — — —
/

 The phase is generated by an extra rescattering, which gives the amplitude
an Im part represented by the second “cut”.

* Spin-dependence comes from the vertex.

Brodsky, Hwang, YK, Schmidt, Sievert ‘13



The Problem

Can we get odd harmonics in the saturation approach?

However, numerical simulations of classical gluon fields by T. Lappi, S.
Srednyak and R. Venugopalan ‘09 appeared to give odd harmonics.

N=256, Q;=1.0 GeV, N,=50, 2.9<q1,p1/Q,<3.1

3 m/Q=0.1 L
0.2
0.3 -
25 0.4 v
[ 0.5 —&— | |
2 N :

Ko(Pr:aT:$)

1.5

= A, AR vad i AAs -

S A PRI T AL 7

02 04 06 08 1 12 14 16 18 2
2¢/n

L. McLerran and V. Skokov, ‘16: odd harmonics may originate in the

classical MV model from higher-order interactions with the projectile. One
has to go beyond the “dilute projectile” approximation.
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Solution Outline

 Even harmonics arise due to the following symmetries of the above
calculation:

k1 < k2 k2 — _k2

* For two gluons originating from two identical classical fields the
ki < ks

symmetry appears impossible to break (have cosines only).

* Hence, for the classical MV-model 2-gluon production, the only way to
generate odd harmonics is to violate the

k2 — —k2

symmetry.



Solution Outline

Imagine single-gluon production which is part of a larger 2-gluon
production process. The cross section is

do
d?k

Suppose the amplitude can be expanded in powers of the coupling,

MR = / P dy e @Y M (z) M*(y)

M(z) = Mi(z) + Ma(a) + ...
If M is the LO result, it is often purely real (or purely imaginary). Hence

/an: de o~ ik (z—y) M (z) M} @)

is even under

k— —k

as we saw above.



Solution Outline

To get odd harmonics need to look at the interference between M, and
Mj:
[ dye e M) M (g) + Mao) M ()]

If this term is odd under E — —E , heed

My (z) My (y) + Ms(z) My (y) = —Mi(y) M3 (z) — Ms(y) My (z)

This is easiest to satisfy by
My (z) M3 (y) = —Ms(y) My ()

The phases of M; and M; have to be off by 7 !

All we have to do is find M; with a phase difference compared to M;. This
is easier said than done.



Classical Single Gluon Production
in Heavy-Light lon Collisions

G. Chirilli, YK, D. Wertepny, arXiv:1501.03106 [hep-ph]



M,: Gluon Production Amplitude for pA Collisions

- High energy scattering between the projectile and the target is an
instantaneous interaction (shockwave, red bar) at x* = 0.

- Gluon emission can happen before or after, not during.
- The projectile interacting with the target results in a power counting of

1 1 1 1 1
M| ~ —(a2Ap) (@2 A Ap =1 o243 ~1
- In total the amplitude
Ak > N
> 7 ‘L'(ZL—ZM) ab _ rrab - 4b
M(Z_La b_L) |2_|_ — EJ_|2 |:U2L UEJ_] (V;)J_t )

- Used the relation: (taVéJ = (Vzﬁtb) i



I
Heavy-Light Collision Case

- Target nucleus has same
power counting as before. Ap>1

- Projectile has many nucleons,
but not too many such that

1 1
as < aZAR ST oA~

- Two nucleons from projectile.

- Power counting for the cross
section:

| ) . Projectile Target
2 A3\2(,2 A3\ 3 41/3
~ —(agAp)T(agAL)" ~ Qg Ap/

g O



Power Counting

For the single-inclusive gluon production in AA collisions in the classical
MV model we have

do 1 2 1/3 2 41/3
d2kd2bd2B:a_sf(o‘sA1 05 Ay )

The function f is known only numerically.

If we expand in the interaction with one of the nuclei (the projectile) we
get

do B 1
2kd?bd?>B  «y

[ai AV (o2 4Y7) 4 (02 41°) a2 a) ]

| [

This is pA. This is what we are trying
(A. Mueller, YK, ‘97) to calculate here.



Types Of D|agram3 - Diagrams have two quarks

Not calculated.

from the projectile and are
order gf.

- Huge number of diagrams.

g - Diagrams can be separated
into three classes:

) Square of order-g3
amplitudes

—1 Dﬂu(l)

[2 4+ 7€

where

i) Interference between order-
g® and order-g amplitudes

iy Interference between order-
g* and order-g2 amplitudes

- These can be combined
together in various ways to
reduce the number of

diagrams.
- Light-cone gauge,
n, A* = AT =0
1
D/u/(l) = Guv — —.(7711 by + 1w lu)

n -1



Retasrded Grgen Function

- Adding the top two diagrams turns the propagator into a
retarded propagator, represented by the arrow.

—i D, (1)
[24+ 1€

—1 Duv(l)

F2m0(—11)6() Dy 1) = 55 47




Cancellations

- Shaded region represents any late-time interaction.

- Moving the retarded gluon propagator across the cut
gives rise to a minus sign.

- The sum of the diagrams is zero.



+ _ + _
" =0 T =+ T =0 zt = -0

Commutators

x5 3

thga

ol
WA 1‘

7 <0

- Using the cancellation shown previously diagrams (1), (2), and (3)
can be combined into a single diagram, diagram (2), with the color
factor on the quark line replaced by a commutator, denoted by the

square brackets:
totd — [t ¢



No Quantum Contributions

- Quantum corrections go away at this order.
- Left with classical fields.
- Zero due to color averaging of quark two.

tr[t®VIV] = tr[t*] = 0



Final

Diagrams

Using these tricks the
number of diagrams
are reduced to a
manageable amount.
Here’s a subset of the
remaining graphs:




Results: Amplitude — A, B, and C graphs

E,-: IIEEDD phase difference!
5] (Ml (21— #21)] EN (T —Fy) FiL b Fl—by @@L —b) FL-dL F —ba
3L |Zor —Z10® |ZL —b1u |2 |For — Doy |? 1Z1L — b2 2L =T (@) — byl |?
e (Tar —bou) T — by S ZL— T fabe [Ubd _ ] [U B Uce ] (V~ td) (V~ te)
G —boi|? |TiL—Diu|? 1FL— T2 e b ] LR bt Ju Nt /g
=\ sk (> = — _ g — _ g
(1), (), [ fop (0 -og) (TS P o
1L 1 21 9 1L 21 ‘ZJ_—TL'J_l |117J_—b1J_|2 |55J_—b2_1_|2
_Gjﬁ* (ZL—b1y) ZL-7, T - bay €j§* (ZL—b1y) L —biy Ty — bay
|2 — g1¢|2 |ZL —2.* |7, - 52L|2 |2, — g1¢|2 €, — 51¢|2 |Z — 52J_|2
B (Uéd Ubd ) e EM (2L —&L) &yL—biy 7 — by B EM L (ZL—boy) 7L - Ty — by
‘ b2 |ZJ__7_;J_|2 |fJ_—b1L|2 |f_j_—b2L|2 |2?_]_—b2L|2 |El_fl|2 |.’fJ_—b1J_|2
_g’i* (2L - byy) &y —biy ST - by
2 —ba |2 |ZL—b1]? |ZL — oy ]?
Ve td Ve te (Ubd _Ubd gJ/}* ( bl—]—) 1 bd (Uce __77cCe )EJ)\_* (ZJ- _bQJ-) 1 1
bii ba1 byt sz_ 2 r by 71 bat T2 n= n
1 2 |2 — bu! |ZL —boy | A |2 — bay| |ZL — b1 |A
: k(= I >
g 2 ab abl gbde d € (FL—71) T —biy Ty —bar . _ _
M [ 2e (Ut — U <~t>(V~t) _ k 2L Sion(by — b
473 / [ T ZJ_] f byt ba 9 |ZJ_—1'J_|2 |fJ__b1_L|2 |£J_—b2j_|2 1g ( 2 1)
H 1
L [ ] see also |. Balitsky, ‘04
Tl XYL =T1Yz2 —T2Y1
7L 0000 Q00Q0,
| sty A = IR cutoff
. s R




I
Results: Amplltude D graphs

ZD

=)\
€
ﬁ Dy - ) (@ mdaa) { REEE

(Zo) —T11) T14 — bay

Tog —bag

|71, — 52J_|2

|ZTo) — gulz

N (T, — byy) ZL—a Toy — Doy EN - (Tay — bor) Ty —bos | 2L — Ty
|$1¢ —boy 2 1EL— Tl |CB2¢ — Dy, |2 |Fo — by |2 |T1o —bou |2 1L — f2L|2_
b bd bd d
>< f" o v ] (ve, - v ] (%), (Vetet?),
/d2£13' fabc Ubd |:Uce e ] (V" ) (V“ 1€ td) EJ)\_* (Z)J- — fl) 1
x ba i b1t ba i 9 |ZJ_—.’fJ_|2 |fj_—g2_l_|2
B e (2 — byr) ZL—Z1 ST — bot B e (2L — Do) 1
|ZL — by |2 LT |EL - by |? 120 —boy |2 [T — by |?
fabc [bd [Uge _yee ] (V“ ) <V—‘ 1€ td) EJ)_\* ) (ZJ_ - b2_L) In 1
47‘(2 ba ZL boy b1 1 bay 9 |ZJ_ . 52J_|2 |2J_ . 6’2J_| A

- To get the E graph results switch quark 1 with quark 2 (1 <2)

: . L]
A Ar A PP W%

D, D, Ds , E; Ey




Compare this with t
projectile (pA) ampl

ne dilute

itudel

Ak (P __*
M (Z1,b]) L = (ZLﬂ b1)
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Odd Harmonics

YK, V. Skokov, arXiv:1802.08166 [hep-ph]



Power Counting

* For the double-inclusive gluon production in AA collisions in the classical
MV model we have

do 1 1/3 2 1/3
— h( 2 A3 42 A )
Pl ®by Phy Phy B a2\ s

e The function his not known numerically.

* |f we expand in the interaction with one of the nuclei (the projectile) we
get

do 1 2 41/3)? 2 41/3 2 41/3)° 2 41/3
d2ky d2by d2ko d2by d?B 2 [(as 4 ) fu (QS 45 ) + (as 4 ) & (&3 45 > T
Kovner, Lublinsky, ‘12; Here we are trying to calculate

Wertepny, YK, ‘12 (above);  the odd harmonic part of this
even harmonics only term.



he diagrams

bl b1 bl

i %
F
200y

(%)

QQQQQQQ/
%, g

e D
oy

e
o
g

Diagram A Diagram B Diagram C

7
§

Y A

y%%

by by by

mgmﬁ% m?% u mgm%
., .

+ R% 2 U4 %
Oa%bm%a wy % %UWG&S&&%
3%% by P, by

Diagram D Diagram E Diagram F

e
?566682?57%%5556

Y 9 Y

remember: we need /d2x d2y e (2=y) [ M (z) M3 (y) + Ms(z) M ()]

repeated twice (for 2 produced gluons) o



The answer

* The part of the cross section giving odd harmonics can be calculated this
way to give

doodd -1
d2ky dyy A2k dys — [2(27)3]2

/ 0B d%by d2by d2b; Ty (B — b)) To(B — by) Ty (B — by)

x d?zy d*wq d? 2y dPwy e~ (21 —wy) —iky (25 —w)) (fl>pT

where

A= My (21,01, 00) - M7 (wy,b3) My (29,by) - M5(ws, by, b3) + My (21, bs) - M3(wy, by, by) My (29,by) - M35 (ws, by,
+ M3(21,b1,by) - M7 (wy,b5) Ms(29,b9,b3) - M (wo,by) + M (21,b3) - M5(wy,by,by) Ms(29,by,b3) - My (ws,
+ My (21,01, 05) - M7 (wy,by) My (29, 03) - M5(ws, by, b3) + My (21,by) - M3(wy,by,00) My (29,b5) - M3(wy, by,
+ M3(21,b1,by) - M7y (wy,by) M5(29,b9,b3) - My (wo,by) + My (21,by) - M5(wy,by,by) Ms(29,by,b3) - My (ws,
+ M3(21,b9,b3) - My (wy,by) My (29,01) - M3(ws, by, bs) + M (21, b1) - M3(wy, by, by) My (29, bq) - M3 (ws, by,
+ M3(21,by,b3) - M7y (wy,by) M3(29,b9,b3) - My (wo,by) + My (21,by) - M5(wy, by, bg) M3(29,by,b3) - My (ws,
+ D3(21,by) - M7 (wy,by) My (29,05) - D3(ws, b3) + M (21,by) - D3(wy,by) My(29,bs) - D3(ws, bs)
+ D3(z1,by) - M7 (wy,by) Ds(29,b3) - My (ws, by) + My (21,by) - D3(wy,by) Ds(29,bs) - M7 (ws, by)
+ D3(21,by) - M7 (wy,by) Ms(29,b0,b3) - My (wy,bs) + M (21,by) - D5(wy,by) My (29,00, b3) - My (wy, bs)
+ Ds(z1,b1) - My (wy,by) My(29,bs) - M3 (ws, by, b3) + M (21,5) - D3(wy,by) My (29,b3) - M3 (ws, by, bs)
+ Dy(29,b1) - M7 (wo,by) M3(21,b9,03) - My (wy,bs) + M (29,by) - D3(ws, by) Ms(21,by,b3) - M7 (wy, by)
+ D3(29,b1) - M7 (wo,by) My (21, 3) - M3(wy,by,b3) + M (29,by) - Dy(wo,by) My(21,bs) - Mz (wy, by, by).
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he answer (continued)

* i g €y (2—0 a a
* Here e M,(z,b) = - >\\z(—b\2 ) [Uzb — Ubb} (Vut”)

3
€ My(z,by,by) = — 49? /d2:v1 d*zs 6 [(z — z1) X (2 — 34)] X

FK'@z—&l) T, —b oz -0y
2o — 242 |z — by * [zo — bylf?

e @ =) 2z x—by  ac(@—b) 3 —b z—x

|Z1_Ql|2 |§_£1‘2 |§2_l22‘2 |£2_Q2‘2 @1_@1’2 ‘§_£2|2

x f (g = O] (U5~ Us | (W, 1)1 (1)

3 *
* g 2 2 EA'(&z—&) 1 — by Zy — by
- D by) = — =— d d ) — X (2 — .
S\ —3(27 —2) ]l L1 G T2 [(é £1> (E £2>] [ |£2 _£1|2 |£1 _ Q2|2 |£2 _ QQ‘Q
ez —by) z—a Ly — Dby € (2y—by) z —by A )
@1 - 1_72|2 |§ - %‘2 @2 _1_72|2 @2 - l_)2|2 |£1 - 92‘2 |§ _£2|2

g vgl =) vz - v ] o) (et
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Can we get a non-zero analytic expression?

* Diagrams A alone bring in 64 terms with 3 quardupoles each, QQQ...

* At the lowest order in the interaction with the target (= 3 gluon
exchanges) we can get a ‘finite’ & non-zero expression (A is an IR cutoff)

doodd 1 2 12 3 8 6 1
_ BT (B — b b) ——
P = Ty / T8~ 9* Qlal®) e

ki + k3 +kyky)?  (Ki+k3—ky-ky)?] 102 1 ky-ky 1 ki
(B 8 ba] 00 Lk L st b))

1

* Seems like HBT diagrams dominate due to their IR divergence.

(k1 + ky)° (k) — ky)°

* In arriving at the above we have also used the Golec-Biernat—Wusthoff
approximation (dropped the logs),

Nz )=1—e %0 n(77) o1 - il



To get odd harmonics need (at least):

 Six gluon emissions from three sources (nucleons) in the projectile:

S

[},
%@9@9

0]

by
66666@ b

ooy

i

e
?7% %fu

%
5
s

71
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o

[ e NN
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Popn

Diagram A

Diagram C

o

S

o

>

oo,
i

2 By
ton b

i ;

Diagram D

Oy

Oy 3 Y

Oy I &Y

* Six gluon exchanges with the target (each M, or D, has at least 2 gluon
exchanges, each M, has 1 gluon exchange).
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Numerical Evaluation

* The same leading-order odd harmonics contribution can be evaluated
numerically.

* Here we plot the anti-symmetrized correlation function C°dd:

90 107, . . x1071 | . .
1.5 - . 5 I
1.0 L 2 - L
° 05 S 14 s
g/ 0.0 §/ 0 - “ It
g, 0.5 : & —1 -
—1.0 1 - —9 -
—1.5 4 -
_2-0 T T T _3 1 T T T ._
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Ao/m Ag/m
* Note that the HBT peaks at 0 and ™ dominate!
CoY(|ky ], kol Ag)
27T 27
1 dpr [ dopo B d’N(ky,ky)  d®N(ky, —ky) d*N(=ky, ky) | d*N(=ky, —ky)
= ZElEZ/ o / on OB = +¢2)( Bleydhy Bley By Pldky | Bldh
0 0
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Numerical evaluation of harmonics

* One can extract the odd harmonics from the correlation functions:

0.08 ' ' ' ' '
0.07 - 1<%<3 mou{2} L
0.06 A A u{2} |
0.05 4 -
0.04 -
0.03 4
0.02 -

|
0.014{ 4 ' 1 :

0.00 . . .
0 1 2

> n
> n
> u

* They are clearly non-zero.
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Conclusions

Odd azimuthal harmonics are an inherent property of particle
production in the saturation framework.

* In the saturation formalism they arise from including saturation
corrections in the projectile (not from the standard dilute projectile
approximation) — need at least 3 sources in the projectile and 3 in the
target.

* Odd (and even) harmonics appear to be dominated by ‘HBT peaks’, the
narrow maxima at A¢ = 0 and A¢ = m.

* Odd harmonics = evidence for saturation? Certainly need a lot of
scatterings.
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A Phase from the Classical Fields

* But wait, classical fields are real... What phase?
* Take a single gluon field contribution to the LSZ formula

/d4x e 0A, = —/d4a: o {Auggeik'm] = /d3$ (8o — iEy) A,) €7

t——+4o0

and do an ultra-boost. One gets in light-cone coordinates

/d4az etk DALLL = /d2:1u dx™ [(8_ — k™) Aﬂ etk
rt —+o0
* Defining o
Ai(fr,kﬂk) = /d2xL dx~ etk e —ikz A/f(x)
we obtain
dta et DAi = —2ikt etk et Ai(az"', kT, k)
xt —+4o0

* Gluon field is real in coordinate space. This gives
Lt 24 1\ — AL(t -
A,u ('CE 7k 7&) — A,u ('CB 7_k 7_E>



A Phase from the Classical Fields

* Two-gluon production cross section is then

dN .
d2ky dyy d2ks dys ~ <AFJ;(CU+,]€T,E1)A/1(SU+, _kiry _El)Ai(ZlﬁJr,k;,kQ)AL(afF, —k;, —@2)>

rt—4o0

Once again, we have Aﬁ(afL, kT k)" = Aﬁ($+, —kT,—k)

Classical fields are k*-independent: then we have Ez —> _Ez’
symmetry and there are no odd harmoncs!?

Resolution: classical fields may depend on k* via theta-functions!

One may (and does) have

Lo+ 1.+ _ ALy, .+ - Qs + 2) L, .+
A (2, kT k) = APV (2, k) + i Sign(kT) AP (21, k)



A Phase from the Classical Fieldss

k)

. with Ay (=t kY k)= AP (2t k) +iSign(kt) AP (2T,

the two-gluon distribution has a non-zero odd-harmonics part

dNoaq
d2k1 dyl d2k2 dyg

2 1
X < {AS)J—(w—i_? kf_vkl) AS_)M<:E+7 _kf—a _El) o A/(12)J_(w+7 kfakl) AS_)N<$+7 _kf—v _El)}

% [Al(/l)J_(x+’ k;»kz) Af)y(x—'—» _k;—a _EQ) o Az(/2)J_(x+7 k;_7k2> A(f)y(lﬂL» —k;—, _EQ)} >

~ Sign(k}) Sign(kf)

rt—=4o0

* One may speculate that the origin of this phase difference between the LO
and part of the NLO gluon production amplitudes is due to oddness of the
latter with respect to flipping the gluon from the final state to the initial
state...



MULTIPLICITY DEPENDENCE. SCALING ARGUMENT Jleelisset)

e Physical two-particle anisotropy coefficients can be simply expressed as

(6(11_1;, [pp9pt] - Nch)

(2} (Nay) = f Dy Dp, Wipp) Wip 10, [0, |1
with

fpz kudk, 2o ® AN (k) [ o, pt]

P d dN°% (k)
S f 2 kldk ¢ plen+p AV _© [pp,Pt]

" dkdy

O [Pps Pt] =

s Q2n+l [p ,pt] -
dN©even (k) P dN©Ven (k)

7 kudk, 52 =2 g [ Kok, 225 C 0y 1
e High multiplicity is driven by fluctuations in p,
e To study multplicity dependence, rescale p, — ¢ p,
e Under this rescaling:

dN dN

a'_y — Czd_y; v3 {2} = v3 (2); v3 82} = 2va, L (2)

e Therefore in the first approximation: 1,,{2} is independent of multiplicity

N
Vanst{2} ¢ (JF
n+ ‘1) 67
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MULTIPLICITY DEPENDENCE: SCALING ARGUMENT

(Vladi’s slide)
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M. Mace , V. S., P. Tribedy, & R. Venugopalan, arXiv:1807.00825

== CGC power counting
I  ATLAS imp. template fit
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MULTIPLICITY DEPENDENCE. NUMERICAL RESULT [WeEls slieke]

0.08
U2 <l » ; _ _ M. Mace , V. S., P. Tribedy, & R. Venugopalan, arXiv:1807.00825
o .
006 -m= ="~
g
N M o
£20.04 -
=5 0.3 < p}* < 3.0 GeV
| ATLAS imp. template fit
0.02 1 ,, 4 Gluons
g, - - '
0.00 S . .
0 100 200 300 400
<N ch)

e Multiplicity dependence of integrated v;
is beyond our computational resources .
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