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Collective flow

Matter produced in HI collisions appears to flow like a fluid and is well described by
relativistic hydrodynamics
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Description in terms of a few local fields (energy density, pressure, baryon density, etc)

Effective theory for long wavelength modes

This description works amazingly well !
even in situations where, a priori, it should not ..

Fluid behavior requires (some degree of) local equilibration.
How is this achieved?

+ microscopic degrees of freedom relax quickly towards local equilibrium
+ long wavelength modes, associated to conservation laws, relax on longer time scales



Thermalization

Assume some form of Kinetic description

f(x,p,t) — feq(x,p,1)

Two main issues

i) relative populations of different momentum modes

Main topic for the
rest of this talk

ii) isotropy of momentum distribution e
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Longitudinal expansion hinders isotropization

The fast expansion of the matter along the
collision axis tends to drive the momentum

distribution to a very flat distribution along the z
direction

Translates into the +px
existence of two 3 #
different pressures — /
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Mean field instabilities may contribute to
restore/maintain isotropy
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(Rebhan, Steineder, 2011) (Attems, Rebhan, Strickland, 2012)

Growth of Lnstability is sensitive to initial fluctuations
(havd particles versus fields)



Collisions can restore/maintain isotropy,
but not on small time scale

Solution of Boltzmann equation in small
scattering angle approximation
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Statistical-classical field stmulations

(Solving classical Yang-Mills equations and averaging over initial conditions)
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"HY drod Yna mLzatlon”

Hydrodynamic behavior may emerge
before local isotropization if achieved

Anisotropy relaxes slowly,
like a 'collective’ variable



ldeal hydrodywnamics of boost tnvariant systems

(Bjorken flow)

t =71coshy z=7sinhy T=A2-2

In local rest frame

Energy-momentum tensor c 0 0 0
uv W, Vo UV w O P 0 0
T" = (e + P)u"u” — Pg =l 0 e B o
0 O 0 Py
Equation of motion 0,T"" =0
Oe e+ Py
0.(1€) = —Pr — =
or T
Three independent components €, P, P; but: € =2P, + Py

conformal symmetry

In local equilibrium P, = P; = €/3 (equation of state)

Then €~ 1 ° T ~ 7 /3 (€ ~ T4)

energy density temperature



VLISCOUS hadrool Yna MLLCS

O™ =0 T = (e+ P)uu’ + P(e)g"” + 7"

(viscous corrections)

Ideal Hydro 7" =0
Ui

Navier-Stokes 7"~ = —not” P, — P; = — (gradient expansion)
(shear viscosity) T

In boost invariant systems, the gradient expansion is an

expansion in inverse powers of W = T’ (T ~ € t 4)
1 1/T micro
— = —— ~ Knudsen number) ~
W T macro

Coefficients of gradients = transport coefficients (e.g. shear viscosity)



Holographic description of a boost invariant plasma

(Heller, Janik, Witaszczyk, [1103.3452))

=y ‘Exact’

3 3rd,1st, 2nd
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Viscous hydro can cope with partial thermalization, and large
differences between longitudinal and transverse pressures



The gradient expansion is divergent
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fr. has been calculated up to n=240 (1) (Htller janik, witaszezyk , 2013)

Sophisticated resummation yields a 'transseries’

(Heller, sPaL’wx,sleL , 2015)
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n=0

n=0

Similar features are observed in kinetic theory
(Heller, Kurkela, Spalinski , Svensson, 2016)



Simple kinetic equation
e Relaxation time approximation

0 =20, ] f(p/T) = -

(derivative at constant r:7 )

fo,7) = feq(p;7)

TR

eFree streaming (e.g. in absence of collisions)

f(t,p) = fo(pL,p:t/t0)

e Solved long ago by Baym (LB 138 (1984) 18]

T d / , /
e(r) = e~ (T=T0)/00) (1) 1 6—7/9/ e (I /1)

To TR T

) 1
(free streaming) h(z) = / d,u\/l — 12+ 22
0

(angular integral)



New tnsight from a stmpler approach

(P®, LiL Yan , 2017, 2018)

Special moments p, = pcos6

1, 9
»Cn = /p2P2n(cos Q)f(p) Po(z) =1 Py(2)= 5(327 —1)

p (Legendre polynomial)

Why moments ?
e There is too much information in the distribution function

e We want to focus on the angular degrees of freedom

The energy momentum tensor is described by first two moments

= / f(p)p " L= L1 =PL—Pr
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Two antagonistic agents

free streaming and collisions
drives the momentum distribution drive the momentum distribution
toward a flat distribution in the longitudinal direction toward an isotropic distribution
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coupled equations for the moments

n 1 n
056 — — [anﬁn + bn£n—1 + CnLn—l—l] — L_ (n > 1)
T T TR

(Free streaming)
(collisions)

oL 1
a—TO = [aoLo + coLy] ao = 4/3 co =2/3

Lo=¢ L1 ="Pr—Pr
o The coefficients dy,bn,Cy  are pure numbers
e The competition between expansion and collisions is made obvious
e Interesting system of coupled linear equations

e Emergence of hydrodynamics is transparent: equations for
the lowest moments

¢ Provides much insight on various versions of viscous hydrodynamics



Free strea WLLV\,@ solution
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Poor convergence: all moments are important at late time
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Free streaming
SimpLe truncations work

0L, 1 . S
= — — [an[,n -+ bn£n—1 + Cn£’n—|—1] 8t£ =—-ML

ot T
(t = In(7/70))

Keeping only the first two moments one gets

0 (L : 2 L
ale) (L 8)(&)

Two eigenmodes )y = 0.929366 A1 = 2.21349

Truncations are reasonably accurate
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Free streaming fixed point

One can transform the coupled linear equations into a single non linear

differential equation

T—— + 9(2) T (ao =+ a1)90 + apa; — copby = 0.

dgo
dr
Write this as
dgo
T d_ = B(&o)
T

B(go)

g =—-A =-221 °

(unstable) o]
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B(go) = —gg — (ap + ai)go — apa; + coby

= —Ap = —0.929
(stable)

NB exact fixed point

gn(T — Oo) — —1



Including collisions
Simple truncations work well

(drop all moments beyond a certain n)
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First few moments are relevant

) moments of free
s 7 oo streaming solution

-

damping of higher
moments by collisions
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A simple model can be constructed

1

0Ly = — (apLo + coLy) ("Almost" viscous hydrodynamics...
1 1 in fact, better!)

8751 = —— (bl,Co -+ CL1£1) — —[,1
T TR

This simple equations capture much of the physics and illustrates the analytic
features of the transition to viscous hydrodynamics



The hydrodyna mic fixed polnt

1 1 1
0Ly = —— (agLo + coLy) 0-L1=——biLo+a1ly) — —L;
T T TR

Complete damping of first moment
70:Lo = —apLo = —=(4/3)Lo  (hydro fixed point)

Modified equation of motion
wgl + g5 + (ap + a1 + w)go + wag + aga; — bicyg =0, 7 = Cste

dgo
= , W
TInw B(go, W)
Pseudo fixed points B(
g0, W)
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The transition from free streaming to hydrodynamics

( Attractor solution )

Early and late times are controlled by the free streaming and the hydrodynamic
fixed points, respectively

g,(t) =710;1In L,

0.8
Free streaming - k \ Hydro fixed point
fixed point YRV N ]
all —_— _— : :::::::7 4+2n
gl’l = —1 '0;5 B | | 7 gn - = 3
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Renormalizatiow of the viscosity

The effect of higher moments can be viewed as a renormalisation of the equation
for the lowest moments, i.e. of the viscous hydrodynamical equations

1
0, L1 = —= (1L + b1 Lo) — [1 + LR 52] L1

T T Li| Tr
Sizeable reduction of the effective
renormalisation of relaxation time, viscosity at early time
TR — Z n/sTR T
0.8 -
or, equivalently, of the viscosity p
v 0.6 - ///
4 N /
= 7-7"RE 0.4 1 _ Lo ]
15 Zn/s — |:1 + 0177_'R £_3i|
0.2
:eaging orger
next leading order ——---
[For an early suggestion of such an effect: 001 R 9o 10

Lublinsky-Shuryak (2007)] g



variants of viscous hydrodynamics

Different approximate ways to solve the equations for the first two moments

Navier Stokes

1
gre=—of 1 m=_" De—_2€, 40 = —coly

3t T 3T 37 3712

Mueller-Israel-Steward

m 4 1 4
M =—— 4 1 ———(H——”>

T 3TTx Tr

Second order hydro (DNMR)

_ 4 n 11 11 38 .
aTH — 5; — /Bﬂ-ﬂ-_ — E /371'71' — ﬁ = aq 7_71- — TR
oL L1 L . 4 5
same as —L =-—p-—q 2= provided > cobi -
or T T TR

3717,
which holds in leading order if T = Tr

Similar analysis can be made for BRSSS hydro (full second order, conformal), or third
order (Jaiswal).

[DNMR= Denicol, Niemi, Molnar, Rischke (2012)]
[BRSSS= Baier, Romatschke, Son, Starinets, Stephanov (2008)]



conclustons

In high energy collisions, the longitudinal expansion prevents the system
to reach full isotropy in a short time (expansion plays a role somewhat
similar to a conservation law...)

However strong anisotropy does not hinder the emergence of (viscous)
hydrodynamic behavior

A simple picture based on special set of moments of the distribution
functions provides much insight info the mathematical structure of
viscous hydrodynamics of expanding (boost invariant) systems

Strong reduction of the viscosity at early times due to out of
equilibrium effects (coupling to higher moments)

Coupled equations for the first few (two) moments could be a
convenient alternative to viscous hydrodynamics



