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Assumptions

We consider:
- monochromatic optical fields

- in isotropic and lossless media.

(a) The fields are generally structured (inhomogeneous):
Re[E(r)e‘i“”:I ] Re[H(r)e‘ia’t];

(b,c) The media are inhomogeneous and dispersive:

8(1’,0)), ,U(l‘,a)), = = = o

This includes “structured light
in structured matter”.



Abraham-Minkowski dilemma




Abraham-Minkowski dilemma

When mentioning optical momentum in a medium,
the first question is: Abraham or Minkowski!

M. Abraham H. Minkowski

[’PAszRe(E*xH)] [ P =cul ]

Brevik PR (1979); Pfeifer et al. RMP (2007); Milloni, Boyd AOP (2010); Kemp JAP (2011)




Abraham-Minkowski dilemma

The “naive” explanation of the Abraham momentum
density is related to the relativity, velocity of photons,
i.e., their kinetic properties:
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However, this makes sense only for plane-wave-like
photons in homogeneous transparent media.



Abraham-Minkowski dilemma

In turn, the Minkowski momentum density is
explained via the quantum-mechanical de Broglie
relation with the wavevector,
i.e., canonical property:

[ P, =hk=nhk, J

However, this works only for L. de Broglie

plane-wave-like photons in
homogeneous, non-dispersive, and transparent media.



Abraham-Minkowski dilemma

Therefore, the Abaraham and Minkowski momenta are

often associated with the kinetic (velocity) and

canonical (wavevector) properties of plane-wave-like

photons in homogeneous, transparent, and

dispersionless media. Dewar (1977); Nelson (1991);
Garrison & Chiao (2004); Barnett (2010); Dodin & Fisch (2012).

Even in simple dispersive media, one needs to modify
the Minkowski momentum to get the canonical de
Broglie result: .

D

M

=P, +{disp.} =k

However, we need a theory working for structured light
in structured media!



Abraham-Minkowski dilemma
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Kinetic and canonical pictures
for free-space light




Structured light in free space

The momentum and angular momentum (AM)
properties of structured light were recently studied in
detail in free space.

In this case the Abraham and Minkowski momenta
converge to the Poynting momentum:

[szo Re(E'x H) ]

However, the Poynting vector is a

kinetic (energy-flux) property, which W~
cannot describe canonical (wavevector) | ¥ . ,g
momentum of structured light.

J. H. Poynting



Structured light in free space

Simple example: an evanescent wave o< exp(lkzz — Kx).

[ts wavevector corresponds to the “supermomentum’”
hk, > hk,,
but the Poynting vector is always “subluminal”:

Cz"P‘ Wi, 16, "P‘ < hk, per photon.

Huard & Imbert (1978); Matsudo et al. (1998); Bliokh et al.; Barnett & Berry (2013)



Structured light in free space

The canonical (orbital) momentum density for
structured free-space light was first written by

M. V. Berry (2009):

[P:%Im[E*~(V)E+H*~(V)H}J

[t describes the local wavevector
properties of structured fields,
Including “supermomentum”

c|Pl/W >c, ie., |Pl=hk, >hk,.

Berry JOA (2009); Bliokh et al. NJP (2013)



Structured light in free space

The difference between the kinetic (Poynting) and
canonical pictures is closely related to the spin-orbital
AM decomposition:

Kinetic (Poynting) Canonical (spin-orbital)
P =k, Re(E'x H) P:%Im[E*-(V)E+H*-(V)H]
J=rxP Szllm[E*xE+H*xH]
2
E=r>dl

Integral: <’P>
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Structured light in free space

Canonical picture perfectly describes momentum, spin,
and orbital AM properties of free-space light:

What are the canonical properties of light in media?

O’Neil et al. PRL (2002); Garces-Chavez et al. PRL (2003);
Bliokh et al., NC (2014); PRL (2014); PRX (2015); PR (2015); NP (2016).



General theory:
Structured light in complex media




Brillouin energy density

The main known quantity that works perfectly for
structured fields in complex media is the Brillouin

energy density (1921):

[ W = %(é’\E\z +ﬁ\H\2) J

d(e,,u)
dw

(2.0)=(e) o

Dispersive corrections are crucial! L. Brillouin



Kinetic-Abraham energy flux

The Poynting vector also preserves its meaning for
structured light in complex media as the kinetic-
Abraham momentum:

[ P, =k, Re(E*x H)}

In fact, it describes the energy flux and group velocity
of the wave rather than its momentum. For localized

solutions in an inhomogeneous dispersive medium:
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Canonical-Abraham quantities

First, in 2012 we performed the spin-orbital
decomposition of the the Poynting-Abraham vector,
introducing the canonical-Abraham picture:

1 |E(VIE H-(V)H
PA:EIm_ ‘(u) + (8) _+{grad.}
( * *

However, these quantities involve gradient corrections
and singularities at interfaces between media.

Bliokh & Nori PRA (2012); Bliokh et al. NC (2014)



Canonical-Abraham quantities

First, in 2012 we performed the spin-orbital
decomposition of the the Poynting-Abraham vector,
introducing the canonical-Abraham picture:

lgrad.} = —i[Vu‘l x Im(E"XE)+ Ve~ x Im(H’ H)}

1 E'xE H xH
S =—Im +
u €

i)
However, these quantities involve gradient corrections
and singularities at interfaces between media.

j, L =rxP,

Bliokh & Nori PRA (2012); Bliokh et al. NC (2014)



Kinetic-Minkowski quantities

Second, in 2011-2012, T. G. Philbin derived, using the
phenomenological Lagrangian-Noether approach, the
kinetic Minkowski-type momentum and AM of light
in a dispersive medium:

~S

e {disp.l}

~

T x P, +{disp.2}

However, these quantities involve

T. G. Philbin

cumbersome dispersive corrections.

Philbin PRA (2011); Philbin & Allanson PRA (2012)



Kinetic-Minkowski quantities

Second, in 2011-2012, T. G. Philbin derived, using the
phenomenological Lagrangian-Noether approach, the
kinetic Minkowski-type momentum and AM of light
in a dispersive medium:

These dispersive corrections have canonical-like forms.

Philbin PRA (2011); Philbin & Allanson PRA (2012)



Canonical-Minkowski quantities

Thus, both the canonical (spin-orbital) Abraham
approach and kinetic (Poynting-like) Minkowski
approach have considerable drawbacks and not entirely
clear physical meaning.

To have a proper momentum and AM pictures for
structured light in complex media, we developed the
canonical Minkowski-type approach.

[t corresponds to the kinetic Minkowski-type

~

quantities derived by Philbin: P =P, +V xS, /2

<75M>: <1~)M>’ <jM> <£M>+<SM>



Canonical-Minkowski quantities

Remarkably, the canonical Minkowski-type quantities

take very natural forms similar to the Brillouin energy,

without awkward gradient/dispersive corrections:
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Bliokh, Bekshaev, Nori PRL (2017), NJP (2017).



Canonical-Minkowski quantities

These expressions are valid for structured (mono-
chromatic) optical fields in arbitrary inhomogeneous
and dispersive (isotropic and lossless) media:

Bliokh, Bekshaev, Nori PRL (2017), NJP (2017).



Canonical-Minkowski quantities

In the simplest case of a plane wave in a homogeneous
transparent medium, different momenta and spins
yield the following values per photon:

1 1 =
fPA:PA:ﬁ_nhk, SA:%th

PP —nk, S =hok

[mportantly, the Minkowski-type quantities are
conserved in media with proper symmetries (see, e.g.,
Snell’s law and transverse beam shifts).

Fedoseyev (1988), Player (1987), Bliokh & Bliokh (2006,2007), ...



Application to surface plasmon-
polaritons at metal-vacuum interfaces




Surface plasmon-polaritons

SPPs provide a simple but very nontrivial example:

- highly dispersive medium;

- highly inhomogeneous medium;

- structured field (with a well-defined wavevector).
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Abraham momentum and group velocity

The kinetic Abraham (Poynting) momentum provides
the SPP group velocity (always subluminal, v, <c ):
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Canonical super-momentum

The novel canonical Minkowski-type momentum
corresponds to the SPP wave vector and, hence, super-
momentum P, =Thk >hk; per polariton:

(W) 35
N ~ h 3.0
(P,) & |
y — M :_pi 25
W <W> 0 2.0}
\_ J 15
O e I o e et i s g s i 7 \/Ew
00 02 04 06 08 10

None of the previous approaches yield this simple result!



Canonical super-momentum

Thus, slow velocity of propagation is accompanied by
high momentum carried by SPP:

dx

2.0
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0.8_

In vacuo, during an interaction between a moving atom and a surface wave of frequency v, the exchanged momentum is
greater than hz/c. First we show, using a semi-classical treatment, that this momentum is ik, in agreement with De Broglie's
relation p = 7k, but unlike the usual notion of wave momentum attached to the Poynting vector. We present experimental
methods to measure this momentum and we give results for two atom speeds.

Huard & Imbert OC (1978); Matsudo et al. OC (1998)



Transverse spin of a SPP

Another quantity of high interest is the transverse spin

of a SPP:

Bliokh & Nori PRA (2012)



Transverse spin of a SPP
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Rodriguez-Fortuno et al., Science (2013); Petersen et al., Science (2014);
le Feber et al., Nat. Commun. (2014); Soller et al., Nat. Nanotechnology (2015); ...



Transverse spin of a SPP
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Transverse spin of a SPP

Using our canonical definitions of the spin and orbital
AM, we obtain the following values:

(a)<§M>:(—2—£)\/;_\ 0l
T e
<EE> = —J(x — <x>)13MZ dx =0 Zj

00 02 04 06 08 1.0

This is the first accurate )
calculation of the transverse spin of a SPP, 5 years later!



Application to modes
of cylindrical waveguides




Angular momentum of guided modes

We apply our formalism to the modes of cylindrical
waveguides: both dielectric and metallic (nanowires):
Guided field

NN
“

\ \ \ )

U U U Nanofiber
«—>

2n/x

The Abraham (Poynting) and canonical momenta yield:

4 : N - N p
f (e Ok W)
\ L \. y

M.F. Picardi et al. (2018), in preparation



Angular momentum of guided modes

Most importantly, we obtain the quantization of the
total AM of the cylindrical eisenmodes in
inhomogeneous media:

oL, ((-D)W +((+1)W +(W, oS, W' -W"
W 14 W W
4 B B ) 1< ~
wJ,. _a)(LMZ+SMZ)_€ | (L)
W W - 7
\_ J
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M.F. Picardi et al. (2018), in preparation




Optical helcity

in complex media




Optical helicity in media

Extending the quantum-like operator approach to the
canonical quantities, we derived helicity density in
dispersive inhomogeneous media:

g ) 3
Sl 0 v/ H—ck g,u,Z:J_r\/E,v:—,
&= = £

e =z 0 . :
\_ e (@ 6=1 6 =-1

[ & =Re(vii)Im(H -E) ]

b) g
incident
wGS = PS
Plane wave: — =i G=-1
W reflected
n>0

F. Alpeggiani et al. (2018), arXiv:1802.09392



Microscopic calculations
and other phenomena




Microscopic calculations

Importantly, we performed microscopic calculations
(fields + electron plasma) of the SPP momentum and
AM densities in the metal, and found these to be fully
consistent with the kinetic (Philbin) and canonical (our)

~

Minkowski-type quantities: W, 75M, T ok IN)M, S,

In particular, we showed that the electrons in the metal
move along small ellipses, thereby providing the material
dispersion contributions to the transverse spin AM:

o 2N
_Qﬁlm(E*xE)
E 2 dw ;

mat




Magnetization of the metal

Since electrons are charged particles, this motion also

generates a magnetization of the metal:

- W de |
M=——S8  =-—-—Im(E xE]
i 2me ™ 4dmce dw 4

This is a special case of the inverse Faraday effect.
Pitaevskii (1961), Kono et al. (1981), Hertel (20006),...

[t means that a SPP carries not only transverse spin but
also the transverse magnetic moment:

C ne(M) 2y _dn

"= (W) TTre Y = ame

~

\_




Magneto-plasmonic effects

The presence of the magnetic moment p immediately

explains the nonreciprocical magneto-plasmonic

spectrum in an applied magnetic field H = H )y :

[ 6w =-h"W-H, ]
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Yu et al. PRL (2008), Bliokh et al. OL (2018)




Duality aspects

Finally, note that we used the dual-symmetric forms of
all equations. For free-space fields, this is a matter of the
convention. One can equally use the electric (or
magnetic) biased canonical quantities:

P—2P°'=Im|E"-(V)E|, (P)=2(P°)

S—28°=Im|E'xE|,  (S)=2(S)
Barnett JMO (2010), Berry JOA (2010), Bliokh et al. NJP (2013)

However, this is true only for localized free-space fields
(not for evanescent waves).



Duality aspects

This is not the case for localized fields in media. For
example, SPPs have purely-electric transverse spin:

[<13M>¢z<g;>, <SM>¢2<S;4>J

Moreover, the microscopic calculations are consistent

only with the dual-symmetric form of the canonical
quantities:
S, =———Im(E"XE)

2t 2 do

[§M=%Im(§E*xE+[LH*xH)J 28, = Im{#E X E)

This supports the dual-symmetric theory (QED 1?7).



Conclusions
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H. Minkowski

L. Brillouin










Thank you!




[t is impossible to study this remarkable
theory without experiencing the strange
feeling that the equations somehow have

a proper life, that they are smarter than we.

You can recognize truth by its beauty
and simplicity. When you get it right, it
is obvious that it is right, because
usually what happens is that more
comes out than goes in.

4 il

R. Feynman




