GEneralized Normal Modes Expansion (GENOME) of Green's tensor for open/lossy systems

Yonatan Sivan, Ben-Gurion University

Parry Y. Chen, Ben-Gurion University David J. Bergman, Tel Aviv University

SRAFT SCIENCE FOUNDA

Nanolight, Spain, 3/2018

Electrodynamics Simulations

Maxwell's Equations

 $\nabla \times (\nabla \times E(\mathbf{r})) - \epsilon(\mathbf{r})k^2 E(\mathbf{r}) = i\omega\mu_0 J_f(\mathbf{r})$ • general sources, general structure

Green's Tensor

$$\nabla \times (\nabla \times \overset{\leftrightarrow}{G}(\boldsymbol{r}, \boldsymbol{r}')) - \boldsymbol{\epsilon}(\boldsymbol{r}) k^2 \overset{\leftrightarrow}{G}(\boldsymbol{r}, \boldsymbol{r}') = k^2 \overset{\leftrightarrow}{\delta}(\boldsymbol{r} - \boldsymbol{r}') \bullet$$

- for a point source
 - e.g. spontaneous emission rate, (L)DOS, thermal emission, dipole-dipole intn's, ...

Electrodynamics Simulations

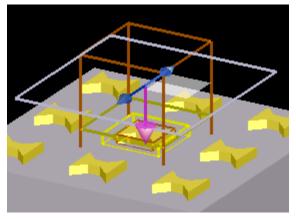
Maxwell's Equations

 $\nabla \times (\nabla \times E(\mathbf{r})) - \epsilon(\mathbf{r})k^2 E(\mathbf{r}) = i\omega\mu_0 J_f(\mathbf{r})$ • general sources, general structure

Green's Tensor

$$\nabla \times (\nabla \times \overset{\leftrightarrow}{G}(\boldsymbol{r}, \boldsymbol{r}')) - \boldsymbol{\epsilon}(\boldsymbol{r}) k^2 \overset{\leftrightarrow}{G}(\boldsymbol{r}, \boldsymbol{r}') = k^2 \overset{\leftrightarrow}{\delta}(\boldsymbol{r} - \boldsymbol{r}') \overset{\bullet}{\bullet}$$

- for a point source
- e.g. spontaneous emission rate, (L)DOS, thermal emission, dipole-dipole intn's, ...



Lumerical FDTD

FDTD/FEM solution

- Define structure & sources
- Repeat simulation for each source distribution
- Hinders study of problems requiring heavy computations

Electrodynamics Simulations – alternative

- eigenmode expansion
 - obtain modes in a single simulation
 - expand fields/Green function in terms of modes
- textbook formulation –

$$\overset{\leftrightarrow}{G}(\boldsymbol{r},\boldsymbol{r}') = \sum_{m} \frac{\boldsymbol{E}_{m}(\boldsymbol{r})\boldsymbol{E}_{m}^{*}(\boldsymbol{r}')}{\lambda_{m}-\lambda}$$

e.g., Morse & Feshbach 1953

- E_m called normal modes (stationary solutions)
- E computed via a superposition integral

Electrodynamics Simulations – alternative

- eigenmode expansion
 - obtain modes in a single simulation
 - expand fields/Green function in terms of modes
- textbook formulation <u>only for closed, loss-free systems</u>

$$\overset{\leftrightarrow}{G}(\boldsymbol{r},\boldsymbol{r}') = \sum_{m} \frac{\boldsymbol{E}_{m}(\boldsymbol{r})\boldsymbol{E}_{m}^{*}(\boldsymbol{r}')}{\lambda_{m}-\lambda}$$

e.g., Morse & Feshbach 1953

- E_m called normal modes (stationary solutions)
- E computed via a superposition integral
- unsuitable for (most) nanophotonic systems
 - open problem!

Electrodynamics Simulations – alternative

- eigenmode expansion
 - obtain modes in a single simulation
 - expand fields/Green function in terms of modes
- textbook formulation <u>only for closed, loss-free systems</u>

$$\overset{\leftrightarrow}{G}(\boldsymbol{r},\boldsymbol{r}') = \sum_{m} \frac{\boldsymbol{E}_{m}(\boldsymbol{r})\boldsymbol{E}_{m}^{*}(\boldsymbol{r}')}{\lambda_{m}-\lambda}$$

e.g., Morse & Feshbach 1953

- E_m called normal modes (stationary solutions)
- E computed via a superposition integral
- unsuitable for (most) nanophotonic systems
 - open problem!
- <u>in this talk</u> resolve the problem!

- Previous derivations of a spectral formulation relied on <u>frequency</u> eigenvalues
 - real part rate of phase accumulation
 - imaginary part mode lifetime
- Called <u>quasi-normal modes</u>

• Lalanne group, Hughes group, Muljarov group, Kuipers group, ...

- Previous derivations of a spectral formulation relied on <u>frequency</u> eigenvalues
 - real part rate of phase accumulation
 - imaginary part mode lifetime
- Called <u>quasi-normal modes</u>
- Example a single sphere
- Internal field $E \sim (2\epsilon_b + \epsilon_i)^{-1}$
 - (complex) eigen-frequency defines a resonance
 - associated with a long series of complications
 - accepts only analytical models for ϵ
 - modes diverges at infinity
 - non-linear eigenvalue equation
 - <u>approximate</u>: incomplete basis

 $\epsilon_i(\omega_m) = -2\epsilon_h$

 $\frac{1}{\epsilon(\mathbf{r},\omega_m)}\nabla\times(\nabla\times\mathbf{E}_m)=\left(\frac{\omega_m}{c}\right)^2\mathbf{E}_m$

- Previous derivations of a spectral formulation relied on <u>frequency</u> eigenvalues
 - real part rate of phase accumulation
 - imaginary part mode lifetime
- Called <u>quasi-normal modes</u>
- Example a single sphere
- Internal field $E \sim (2\epsilon_b + \epsilon_i)^{-1}$
 - (complex) eigen-frequency defines a resonance
 - associated with a long series of complications
 - accepts only analytical models for ϵ
 - modes <u>diverges</u> at infinity
 - non-linear eigenvalue equation
 - <u>approximate</u>: incomplete basis

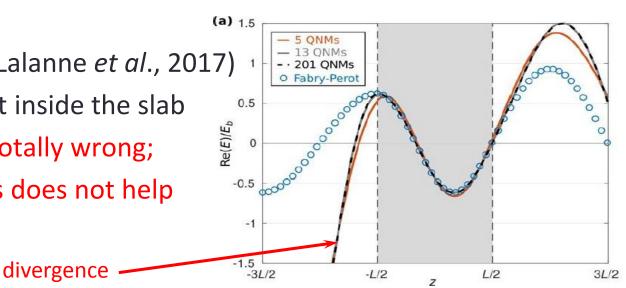
 $\epsilon_i(\omega_m) = -2\epsilon_h$

 $\frac{1}{\epsilon(\mathbf{r},\omega_m)}\nabla\times(\nabla\times\mathbf{E}_m)=\left(\frac{\omega_m}{c}\right)^2\mathbf{E}_m$

- Previous derivations of a spectral formulation relied on <u>frequency</u> eigenvalues
 - real part rate of phase accumulation
 - imaginary part mode lifetime
- Called <u>quasi-normal modes</u>

- Excellent agreement inside the slab
- Fields outside slab totally wrong;

increasing # of modes does not help



Eigenmode methods – complex permittivity (ϵ) eigenvalues

- Previous derivations of a spectral formulation relied on <u>frequency</u> eigenvalues
 - real part rate of phase accumulation
 - imaginary part mode lifetime
- Alternative <u>permittivity</u> (ϵ) eigenvalues
 - radiation loss compensated by "artificial" gain in $\epsilon_{\rm m}$
 - decay in space
- <u>Normal</u> modes!
- Previous work Bergman (1979), Agranovitch group, Stone group (SALT)

 ϵ_h

 ϵ_i

 $\epsilon_m = -2\epsilon_h$

Eigenmode methods – complex permittivity (ϵ) eigenvalues

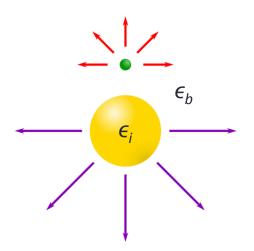
- Previous derivations of a spectral formulation relied on <u>frequency</u> eigenvalues
 - real part rate of phase accumulation
 - imaginary part mode lifetime
- Alternative <u>permittivity</u> (ϵ) eigenvalues
 - radiation loss compensated by "artificial" gain in $\epsilon_{\rm m}$
 - decay in space
- <u>Normal</u> modes!
- In this talk
 - 1. simple derivation
 - 2. expression for Green's tensor
 - 3. easy numerical implementation

 ϵ_h

 ϵ_i

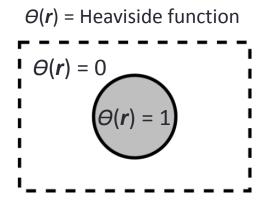
 $\epsilon_m = -2\epsilon_h$

Derivation I

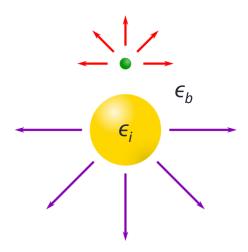


Begin with Helmholtz equation with sources $\nabla \times (\nabla \times \mathbf{E}(\mathbf{r})) - \epsilon(\mathbf{r})k^2 \mathbf{E}(\mathbf{r}) = i\omega\mu_0 \mathbf{J}_f(\mathbf{r})$

Treat structure as another source of inhomogeneity $\nabla \times (\nabla \times E) - \epsilon_b k^2 E = (\epsilon_i - \epsilon_b) \theta(\mathbf{r}) k^2 E + i \omega \mu_0 \mathbf{J}_f(\mathbf{r})$ by moving to Right-Hand-Side



Derivation I



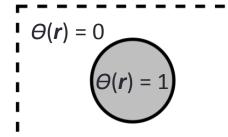
Begin with Helmholtz equation with sources $\nabla \times (\nabla \times \mathbf{E}(\mathbf{r})) - \epsilon(\mathbf{r})k^2 \mathbf{E}(\mathbf{r}) = i\omega\mu_0 \mathbf{J}_f(\mathbf{r})$

Treat structure as another source of inhomogeneity $\nabla \times (\nabla \times E) - \epsilon_b k^2 E = (\epsilon_i - \epsilon_b) \theta(\mathbf{r}) k^2 E + i \omega \mu_0 \mathbf{J}_f(\mathbf{r})$ by moving to Right-Hand-Side

Green's function solution (Lippmann-Schwinger)

$$E(\mathbf{r}) = \underbrace{(\epsilon_i - \epsilon_b) \int \overset{\leftrightarrow}{G}_0(|\mathbf{r} - \mathbf{r}'|)\theta(\mathbf{r}')E(\mathbf{r}') d\mathbf{r}'}_{u} + \frac{i}{\omega\epsilon_0} \underbrace{\int \overset{\leftrightarrow}{G}_0(|\mathbf{r} - \mathbf{r}'|)J_f(\mathbf{r}') d\mathbf{r}'}_{\hat{\Gamma}}$$

 $\Theta(\mathbf{r})$ = Heaviside function



where
$$\nabla \times (\nabla \times \overset{\leftrightarrow}{G}_0) - \epsilon_b k^2 \overset{\leftrightarrow}{G}_0 = k^2 \overset{\leftrightarrow}{\delta} (\boldsymbol{r} - \boldsymbol{r}')$$

In absence of a source, get an eigenvalue problem $E_m(\mathbf{r}) = \underbrace{(\epsilon_m - \epsilon_b) \int \dot{G}_0(|\mathbf{r} - \mathbf{r}'|)\theta(\mathbf{r}')E_m(\mathbf{r}')d\mathbf{r}'}_{u_m} \longrightarrow \langle E_m|\hat{\Gamma}\hat{\theta} = \frac{1}{u_m}\langle E_m|$

Derivation II

$$E(\mathbf{r}) = \underbrace{(\epsilon_i - \epsilon_b) \int \overset{\leftrightarrow}{G}_0(|\mathbf{r} - \mathbf{r}'|)\theta(\mathbf{r}')}_{u} E(\mathbf{r}') d\mathbf{r}' + \frac{i}{\omega\epsilon_0} \underbrace{\int \overset{\leftrightarrow}{G}_0(|\mathbf{r} - \mathbf{r}'|)}_{\hat{\Gamma}} \mathbf{J}_f(\mathbf{r}') d\mathbf{r}'$$

• Compact notation: $E = u\hat{\Gamma}\hat{\theta}E + \frac{i}{\omega\epsilon_0}\hat{\Gamma}J_f$ Farhi & Bergman, *PRA* (2016) Formal solution: $E = \left(\frac{1}{1-u\hat{\Gamma}\hat{\theta}}\right)\frac{i}{\omega\epsilon_0}\hat{\Gamma}J_f$

Derivation II

$$E(\mathbf{r}) = \underbrace{(\epsilon_i - \epsilon_b) \int \overset{\leftrightarrow}{G}_0(|\mathbf{r} - \mathbf{r}'|)\theta(\mathbf{r}')E(\mathbf{r}') d\mathbf{r}'}_{u} + \frac{i}{\omega\epsilon_0} \underbrace{\int \overset{\leftrightarrow}{G}_0(|\mathbf{r} - \mathbf{r}'|)J_f(\mathbf{r}') d\mathbf{r}'}_{\hat{\Gamma}}$$

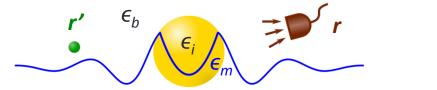
Compact notation: $E = u\hat{\Gamma}\hat{\theta}E + \frac{i}{\omega\epsilon_0}\hat{\Gamma}J_f$ Farhi & Bergman, *PRA* (2016) Formal solution: $E = \left(\frac{1}{1-u\hat{\Gamma}\hat{\theta}}\right)\frac{i}{\omega\epsilon_0}\hat{\Gamma}J_f$

Solve by projecting onto eigenmodes (left multiplication) $\hat{\epsilon}_{b} \qquad \hat{\epsilon}_{i} \qquad \hat{\epsilon}_{m} \qquad \hat{l} = \sum_{m} \hat{\theta} |E_{m}\rangle \langle E_{m} | \hat{\theta} \qquad \langle E_{m} | \hat{\Gamma} \hat{\theta} = \frac{1}{u_{m}} \langle E_{m} |$ operate to the left (on bra) NB: $\epsilon_{m} \neq \epsilon_{i} \qquad -i\omega\epsilon_{0}\hat{\theta} |E\rangle = \sum_{m} \hat{\theta} |E_{m}\rangle \langle E_{m} | \frac{\hat{\Gamma}\hat{\theta}}{1-u\hat{\Gamma}\hat{\theta}} |J_{f}\rangle = \sum_{m} \hat{\theta} |E_{m}\rangle \frac{1}{u_{m}-u} \langle E_{m} |J_{f}\rangle$

Substituting into the Lippmann-Schwinger equation gives field everywhere

$$-i\omega\epsilon_{0}|E\rangle = \hat{\Gamma}|J_{f}\rangle + \sum_{m}|E_{m}\rangle\frac{\epsilon_{i}-\epsilon_{b}}{(\epsilon_{m}-\epsilon_{i})(\epsilon_{m}-\epsilon_{b})}\langle E_{m}|J_{f}\rangle$$

Analytic solution for Fields

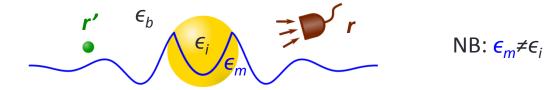


NB: $\epsilon_m \neq \epsilon_i$

Eigenmodes provide total field for all *source* and *detector* configurations *in a single simulation!*

$$E(r) = E_0(r) + \frac{1}{i\omega\epsilon_0} \sum_m E_m(r) \frac{\epsilon_i - \epsilon_b}{(\epsilon_m - \epsilon_i)(\epsilon_m - \epsilon_b)} \int E_m^{\dagger}(r') \cdot J_f(r') dV$$
radiation
w/o structure
$$\int \vec{G}_0(|r - r'|) J_f(r') dr'$$

Analytic solution for Fields



Eigenmodes provide total field for all *source* and *detector* configurations *in a single simulation!*

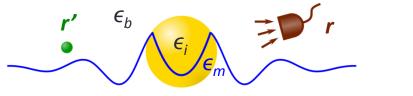
$$E(\mathbf{r}) = \underbrace{E_0(\mathbf{r})}_{i\omega\epsilon_0} + \frac{1}{i\omega\epsilon_0} \sum_m E_m(\mathbf{r}) \underbrace{\frac{\epsilon_i - \epsilon_b}{(\epsilon_m - \epsilon_i)(\epsilon_m - \epsilon_b)}}_{\text{detuning}} \int \underbrace{E_m^{\dagger}(\mathbf{r}') \cdot \mathbf{J}_f(\mathbf{r}') \, dV}_{\text{source-mode overlap}}$$
radiation
w/o structure
from resonance

- Straightforward physical interpretation
- Rigorous everywhere (completeness)
- Applicable to any (complex) inclusion material
- Same analytical form for all sources far field, near field, ...

Analytic solution for Green's Function – I

for a point source:

$$J_f(\mathbf{r'}) = J_0 \delta(\mathbf{r'})$$



NB: $\epsilon_m \neq \epsilon_i$

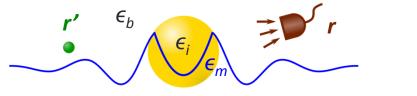
Eigenmodes provide Green's tensor for all *source* and *detector* configurations *in a single simulation!*

$$\overset{\leftrightarrow}{G}(\boldsymbol{r},\boldsymbol{r}') = \overset{\leftrightarrow}{G}_{0}(|\boldsymbol{r}-\boldsymbol{r}'|) + \frac{1}{k^{2}} \sum_{m} \boldsymbol{E}_{m}(\boldsymbol{r}) \underbrace{\frac{\boldsymbol{\epsilon}_{i} - \boldsymbol{\epsilon}_{b}}{(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{i})(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{b})}}_{\text{free-space detuning from resonance}} \boldsymbol{E}_{m}^{\dagger}(\boldsymbol{r}')$$

Analytic solution for Green's Function – II

for a point source:

 $J_f(\mathbf{r'}) = J_0 \delta(\mathbf{r'})$



NB: $\epsilon_m \neq \epsilon_i$

Eigenmodes provide Green's tensor for all *source* and *detector* configurations *in a single simulation!*

$$\overset{\leftrightarrow}{G}(\boldsymbol{r},\boldsymbol{r}') = \overset{\leftrightarrow}{G}_{0}(|\boldsymbol{r}-\boldsymbol{r}'|) + \frac{1}{k^{2}} \sum_{m} \boldsymbol{E}_{m}(\boldsymbol{r}) \underbrace{\frac{\boldsymbol{\epsilon}_{i} - \boldsymbol{\epsilon}_{b}}{(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{i})(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{b})}}_{\text{free-space}} \boldsymbol{E}_{m}^{\dagger}(\boldsymbol{r}') \underbrace{\frac{\boldsymbol{\epsilon}_{i} - \boldsymbol{\epsilon}_{b}}{(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{i})(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{b})}}_{\text{detuning}}_{\text{from resonance}}$$

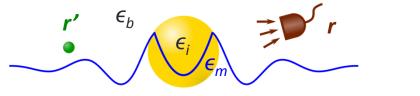
- Different from "standard" Green function expansion
 - valid for lossy and/or open systems
 - includes source
 - rigorous everywhere (completeness)
 - extra factor vanishes on resonance

$$\overset{\leftrightarrow}{G}(\boldsymbol{r},\boldsymbol{r'}) = \sum_{m} \frac{\boldsymbol{E}_{m}(\boldsymbol{r})\boldsymbol{E}_{m}^{*}(\boldsymbol{r'})}{\lambda_{m}-\lambda}$$

Analytic solution for Green's Function – II

for a point source:

 $J_f(\mathbf{r'}) = J_0 \delta(\mathbf{r'})$



NB: $\epsilon_m \neq \epsilon_i$

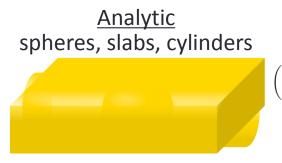
Eigenmodes provide Green's tensor for all *source* and *detector* configurations *in a single simulation!*

$$\overset{\leftrightarrow}{G}(\boldsymbol{r},\boldsymbol{r}') = \overset{\leftrightarrow}{G}_{0}(|\boldsymbol{r}-\boldsymbol{r}'|) + \frac{1}{k^{2}} \sum_{m} \boldsymbol{E}_{m}(\boldsymbol{r}) \underbrace{\frac{\boldsymbol{\epsilon}_{i} - \boldsymbol{\epsilon}_{b}}{(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{i})(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{b})}}_{\text{free-space}} \boldsymbol{E}_{m}^{\dagger}(\boldsymbol{r}') \underbrace{\frac{\boldsymbol{\epsilon}_{i} - \boldsymbol{\epsilon}_{b}}{(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{i})(\boldsymbol{\epsilon}_{m} - \boldsymbol{\epsilon}_{b})}}_{\text{detuning}} \mathbf{E}_{m}^{\dagger}(\boldsymbol{r}')$$

GEneralised Normal Mode Expansion – GENOME

Chen, Bergman & Sivan, ArXiv

Finding the ϵ -Eigenmodes



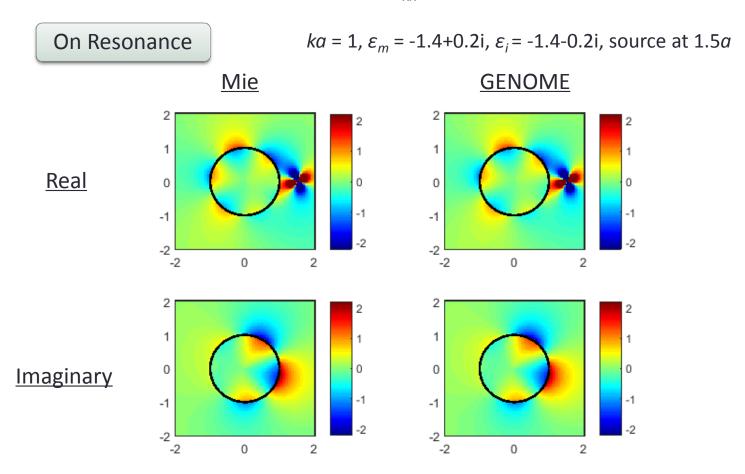
For simple structures solve dispersion relation

 $\left(\frac{\mu_c}{\alpha_c a} \frac{J}{J} n \frac{j'_m(na)}{j_m(na)} = \frac{y'_m(a)}{y_m(a)} \left(\frac{\epsilon_c}{\alpha_c a} \frac{J'_m(\alpha_c a)}{J_m(\alpha_c a)} - \frac{\epsilon_b}{\alpha_b a} \frac{H'_m(\alpha_b a)}{H_m(\alpha_b a)}\right) - \left(\frac{m\beta}{k}\right)^2 \left(\frac{1}{(\alpha_c a)^2} - \frac{1}{(\alpha_b a)^2}\right)^2 = 0$ e.g., stated is discussive inversion relation

solve by contour methods (Chen & Sivan, Comp. Phys. Comm. 2017)

Comparison to Mie Solution

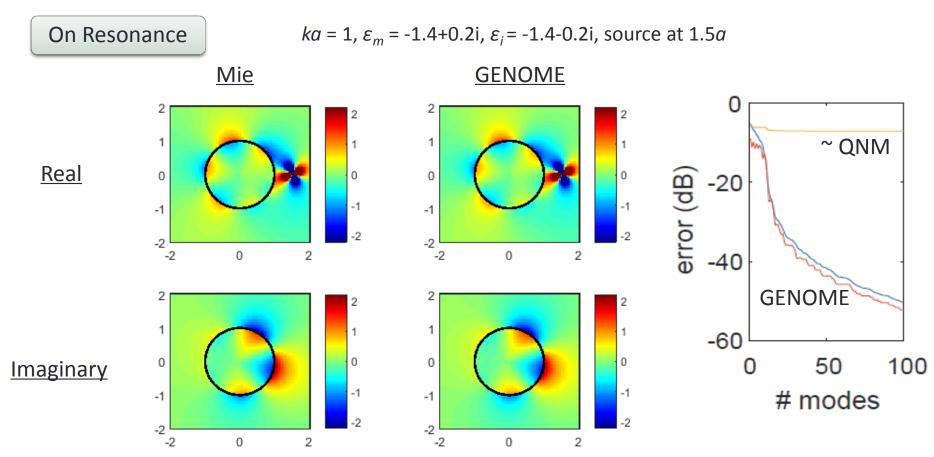
Line dipole source near cylinder; G_{xx} component of the electric field



Eigenmode search: PY Chen, Y Sivan, *CPC* **214** 105 (2017); free codes!

Comparison to Mie Solution

Line dipole source near cylinder; Arbitrary close to Mie solution

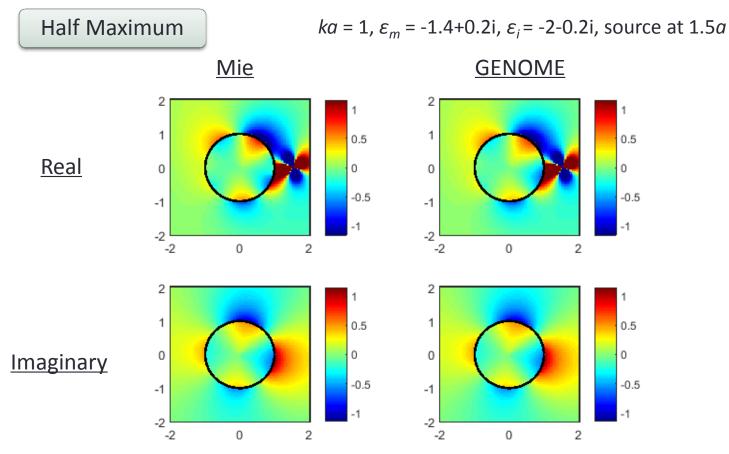


- inside and arbitrarily far outside cylinder
- including source..
- Imaginary and real part

Eigenmode search: PY Chen, Y Sivan, *CPC* **214** 105 (2017); free codes!

Comparison to Mie Solution

Line dipole source near cylinder; Arbitrary close to Mie solution



on and off resonance

Eigenmode search: PY Chen, Y Sivan, *CPC* **214** 105 (2017); free codes!

General structure – COMSOL implementation

Eigenvalue equation – differential form

$$\nabla \times (\nabla \times \boldsymbol{E}_m) - \boldsymbol{\epsilon}_b k_0^2 \boldsymbol{E}_m = (\boldsymbol{\epsilon}_m - \boldsymbol{\epsilon}_b) \boldsymbol{\theta}(\boldsymbol{r}) k_0^2 \boldsymbol{E}_m$$

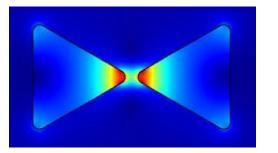
However, COMSOL only solves for k as eigenvalue

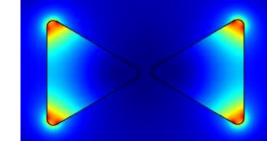
$$\nabla \times (\nabla \times \boldsymbol{E}_m(\boldsymbol{r})) - \tilde{\boldsymbol{\epsilon}}(\tilde{\boldsymbol{\omega}}, \boldsymbol{r}) \tilde{k}_m^2 \boldsymbol{E}_m(\boldsymbol{r}) = 0$$

solved by simple substitution trick

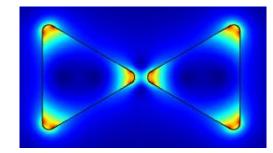
Results

Bowtie antenna



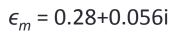


 $\epsilon_m = 0.42 + 0.016i$



 ϵ_m = 0.56+0.009i

Chen, Bergman & Sivan, ArXiv



General structure – COMSOL implementation

Eigenvalue equation – differential form

$$\nabla \times (\nabla \times \boldsymbol{E}_m) - \boldsymbol{\epsilon}_b k_0^2 \boldsymbol{E}_m = (\boldsymbol{\epsilon}_m - \boldsymbol{\epsilon}_b) \boldsymbol{\theta}(\boldsymbol{r}) k_0^2 \boldsymbol{E}_m$$

However, COMSOL only solves for *k* as eigenvalue

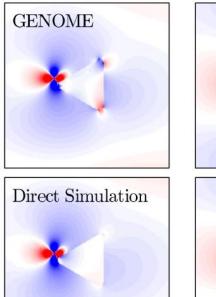
$$\nabla \times (\nabla \times \boldsymbol{E}_m(\boldsymbol{r})) - \tilde{\boldsymbol{\epsilon}}(\tilde{\boldsymbol{\omega}}, \boldsymbol{r}) \tilde{k}_m^2 \boldsymbol{E}_m(\boldsymbol{r}) = 0$$

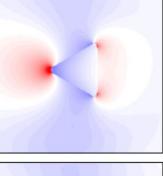
solved by simple substitution trick

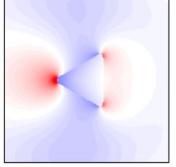
Results

Bowtie antenna

agreement up to 2-3 digits with < 10 modes







 $Real(G_{xx})$

 $Imag(G_{xx})$

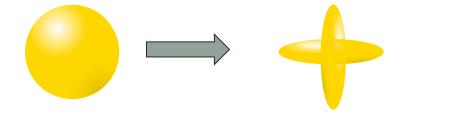
Extensions – I

- Compute modes of "distorted" geometries semi-analytically
 - with E. Muljarov, Cardiff
 - reliable eigenvalue solver for <u>any</u> geometry; inhomogeneous permittivity
 - exact solution without solving any PDE!

"distortions" can be <u>arbitrarily deep due to completeness</u> ~ 100 times faster than COMSOL; fully reliable

Extensions – II

- Compute modes of "distorted" geometries semi-analytically
 - with E. Muljarov, Cardiff
 - reliable eigenvalue solver for <u>any</u> geometry; inhomogeneous permittivity
 - exact solution without solving any PDE!



"distortions" can be <u>arbitrarily deep due to completeness</u> ~ 100 times faster than COMSOL; fully reliable

"Distort" frequency

- obtain lineshapes from a <u>single</u> calculation
- overcome only advantage of quasi-normal modes...

Additional results

Exact version of "hybridization theory"

eigenmode

Two Cylinder

Modes

- Solve an old problems in nonlinear optics surface nonlinearity [Reddy et al. JOSAB (2017)]
- Extend to magnetic materials [Bergman, Farhi, Chen, submitted]

"source"

Summary – I

- Generalization of normal mode expansions to lossy/open systems (GENOME)
 - solve problem that was open for decades
- Orders-of-magnitude faster than "brute-force" numerics
- Exact; compatible with any numerical scheme currently in use..
- Deep physical insights
 - modal contribution, interference and competition, ...

Summary – II

- Especially useful for computationally-heavy problems
 - Metamaterial design, thermal emission, heat transfer, ...
 - Purcell effect calculations
 - e.g., graphene flakes..
 - vdW forces, quantum friction, ...
 - Forster energy transfer
 - ...
- Looking for interesting problems & interested colleagues...
 - experimentalists , theoreticians, numerics experts, ...
 - open positions for students/post docs

