

Towards a space platform for macroscopic tests of quantum physics

Rainer Kaltenbaek

Testing quantum physics – the superposition principle

17.09.2018

Testing quantum physics – the superposition principle

Source

U Wall

Source

ll Wall

What could we learn?

With high-mass particles

MAQRO – mission proposal

Viena Center for Quantum Science and Technology

MAQRO

Levitation Workshop, Benasque

17.09.2018

ienna

Study at ESA's Concurrent Design Facility

Model-based study at ESA's CDF, 15.5.18 – 10.7.18.

"Phase 0" mission analysis to identify

- Science goals
- Science requirements
- Experiments to be performed
- Case for space
- Critical challenges & technical solutions
- Technology to be developed
- Mission & orbit configuration

Quantum physics platform in space (QPPF)

MAQRO

ce and Technology

ESA's "Concurrent Design Facility"

17.09.2018

Parametrization of deviations from coherent quantum evolution

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right]$$

Parametrization of deviations from coherent quantum evolution

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right] - \Lambda \left[\hat{x}, \left[\hat{x}, \hat{\rho}\right]\right]$$

long-wavelength limit

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right] - \gamma \hat{\rho}$$

short-wavelength limit

Parametrization of deviations from coherent quantum evolution

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right] - \Lambda \left[\hat{x}, \left[\hat{x}, \hat{\rho}\right]\right]$$

long-wavelength limit Test for mass-dependent decoherence

- Mass
- Composition

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right] - \gamma \hat{\rho}$$

short-wavelength limit

Parametrization of deviations from coherent quantum evolution

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right] - \Lambda \left[\hat{x}, \left[\hat{x}, \hat{\rho}\right]\right]$$

long-wavelength limit Test for mass-dependent decoherence

- Particle size
- Mass
- Composition

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[\hat{H}, \hat{\rho}\right] - \gamma \hat{\rho}$$

short-wavelength limit

- <u>Gray Dashed Line:</u> QG Model (Ellis, Mohanty et al)
- <u>Yellow:</u> CSL model (Ghirardi, Rimini, Weber, Pearle, et al, $\lambda \in [10^{-8}, 2.2 \times 10^{-17}]$ Hz, $r_c = 100$ nm)
- <u>Blue:</u> DP Model (Diósi, Penrose)
- <u>Red:</u> K Model (Károlyházy)
- Current mass record: 10⁴ atomic mass units (amu)

Coherent evolution of spherical test particle

Testing quantum decoherence

Test parameter dependence of known decoherence mechanisms

- particle size
- temperature
- polarizability
- vibrations
- pressure(?)
- charge(?)

 10^7 amu

10⁹ amu

Vienna Center for Quantu

cience and Technology

······ 10¹¹ amu

10¹³

10¹²

10¹⁰

mass (amu)

 10^{11}

 10^{9}

10

10¹⁵

- Red: K Model (Károlyházy)
 - Current mass record: 10⁴ atomic mass units (amu)

1011

107

10⁴

17.09.2018

1015

Region of interest:

 $10^9 \text{ m}^{-2} \text{s}^{-1} \lesssim \Lambda \lesssim 10^{14} \text{ m}^{-2} \text{s}^{-1}$

 10^8 amu $\lesssim m \lesssim 10^{11}$ amu

17.09.2018

Perform experiments in this regime

first deviations due to (quantum-)gravity?

10¹⁰

mass (amu)

10⁹

10¹²

107

 10^{4}

1015

Region of interest:

 $10^9 \text{ m}^{-2} \text{s}^{-1} \lesssim \Lambda \lesssim 10^{14} \text{ m}^{-2} \text{s}^{-1}$

 10^8 amu $\lesssim m \lesssim 10^{11}$ amu

Parameter	Value	Driver/Justification
Λ _{env}	$\lesssim 10^9 \mathrm{m}^{-2} \mathrm{s}^{-1}$	Standard decoherence must be less than decoherence tested for
Particle mass	≳ 10 ⁸ amu	Sensitive to gravitational deviations?

 10^{4}

17.09.2018

Perform experiments in this regime

first deviations due to (quantum-)gravity?

10¹⁰

mass (amu)

10⁹

10¹²

MAQRO – suggested experiments

Idea for ground-based experiments: J. Bateman et al. 2015 Adapted for MAQRO by RK in 2015/2016

Near-field Talbot interferometry as in record-holding experiment by S. Eibenberger in 2013

MAQRO

17.09.2018

Assuming $\omega = 10^5$ rad/s, 0.3 occupation at $m = 5 \times 10^9$ amu, fused-silica particle, 30-day measurement run, 100s per measurement

Narrow the gap between existing experiments & "quantum-gravity" regime

17.09.2018

Assuming $\omega = 10^5$ rad/s, 0.3 occupation at $m = 5 \times 10^9$ amu, fused-silica particle, 30-day measurement run, 100s per measurement

Narrow the gap between existing experiments & "quantum-gravity" regime

17.09.2018

Matter-wave interferometry I/II

Working principle

17.09.2018

Levitation Workshop, Benasque

MAQRO

Matter-wave interferometry I/II

MAQRO

Reduction of interference visibility for increasing Λ for 100s free fall & 1e9 amu

17.09.2018

Reduction of interference visibility for increasing Λ for 100s free fall & 1e9 amu

- Blue-gray: scattering for environment temperature in 5K steps [10K,30K]
- Gray: absorption/emission for temp. in 2K steps [16k,24K]

Reduction of interference visibility for increasing Λ for 100s free fall & 1e9 amu

17.09.2018

Levitation Workshop, Benasque

Vienna Center for Quantum

Science and Technology

Case for space

/ienna

Vienna Center for Quant cience and Technology

MAQRO

Before QPPF study: passive radiative cooling

New spacecraft & orbit configuration

Sketch of QPPF S/C configuration, courtesy: ESA

MAQRO

New spacecraft & orbit configuration

Vienna Center for Quantun Science and Technology

Critical challenge I/II: particle loading

Particle Transportation Sequence:

- 1. Select Batch
- 2. UV Active Paul Trapp
- 3. LED fires at particle
- Particle(s) absorb energy and remove from surface, charged negatively
- Electrodes guide charged particle into piping
- 6. Particles travel through charge/mass selection piping
- 7. Particle arrives into Paul Trap
- 8. Transferred into optical trap
- 9. Particle discharged using UV light

MAQRO

Limit number of collisions during Talbot time

/ienna

Vienna Center for Quantun Science and Technology

Critical challenge II/II: vacuum

MAQRO

17.09.2018

- Consolidation of science requirement on pressure
- Technology development of payload components:
 - High-finesse cavities
 - interferometric position measurement of test-particle
 - GHz EOMs
 - AOMs
 - DUV laser/grating
 - cooling with multiple cavity modes
 - spatial mode multiplexers
 - narrow-band fiber Bragg filters
 - low-noise amplifiers
 - homodyne detection
- Acquiring/testing >10⁵ particles with 'identical' (< few %) properties within batch
- Long term degradation of particles?
- Particle disposal

Proof-of-principle experiments I/III

- Develop optomechanical platform using optically trapped particles
- 3D optomechanical cooling and control
- non-classical state preparation
- free-fall experiments in the lab
- quantum state tomography

17.09.2018

Proof-of-principle experiments I/III

- Develop optomechanical platform using optically trapped particles
- 3D optomechanical cooling and control
- non-classical state preparation
- free-fall experiments in the lab
- quantum state tomography

MAQRO

ience and Technology

Proof-of-principle experiments II/III

17.09.2018

MAQRO

Proof-of-principle experiments III/III

MAQRO

Vienna Center for Quantum

Science and Technology

17.09.2018

- ESA find's the topic of macroscopic tests of quantum physics very interesting
- → New Science Ideas topic of interest for future space missions
- QPPF \rightarrow possible to realize a platform for such experiments

QPPF Final Presentation:	
22/11/2018	

Next steps

- Structure consortium, working groups, regular meetings
- Address challenges & develop technologies
- Increase TRL of core technologies
- Demonstration experiments (lab, drop-tower, cubesat)

17.09.2018

Levitation Workshop, Benasque

VCQ Vienna Center for Quantum Science and Technology

QTSpace COST action (CA15220)

10/16 - 10/20 26 countries

www.maqro-mission.org

Austrian Research Promotion Agency (MAQROsteps, Project no. 840089) (ULE-Cavity-Access, Project no. 854036) (QuantumShield, Project no. 865996)

/ienna

MQES study (ESA contract Po P5401000400) NanoTrapS project (ESA contract 4000105799/127NL/Cbi) **QPPF CDF Study 2018**

17.09.2018