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Introduction Southampton

@ Focus of my work is on implementing estimation and feedback to cool
particles

@ Goal is cooling a levitated nanoparticle to ground state of harmonic
potential

@ Need an accurate estimation method in order to implement the
correct feedback

@ Need an accurate model of the system against which to evaluate
estimation methods
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Talk Outline Southampton

Classical Simulation

Kalman filtering for tracking and cooling

Quantum Simulation
@ Quantum tracking and cooling

@ Summary
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Experimental Setup Southampton
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®Vovrosh et al. 2017, J. Opt. Soc. Am. B (1364/JOSAB.34.001421).
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Classical Equation of Motion Southampton

The classical equation of motion for a levitated nanoparticle without
feedback control. Includes the effect of gas collisions.!

dg|l v |
[dv] - [—Fov + —cugq_ dt

0

+ | [2lokg Ty | dW,
m i

dW is the time increment of a Wiener process, dW ~ N(0, v dt), wp is
the frequency of the harmonic trap, Iy is the damping due to the gas, Tp
is the temperature of the gas, and m is the mass of the nanoparticle.

!Gieseler, Novotny, and Quidant 2013, Nat Phys (10.1038/nphys2798).
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Southampton

Classical Simulation

An example time trace of the output position and velocity from simulating
this equation. The variation in amplitude and phase is due to stochastic
gas collisions.
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Feedback Cooling Southampton

Feedback cooling works to cool the centre of mass motion of the trapped
particle.
@ When particle is moving away from the centre of trap — potential is
stiffened.
@ When particle is moving towards the centre of trap — potential is
shallowed.
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Classical Equation of Motion Southampton

The classical equation with feedback cooling.

[2’3] - Lrov . As;;(qu(t))](—waq)] *
0

+ | [2MokgTy| dW,
m
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Cooling Simulations Southampton

Plot showing the time-averaged temperature reached in simulation when
cooling the particle with different damping rates and modulation depths
and it's agreement with the theoretical expression.
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?Vovrosh et al. 2017, J. Opt. Soc. Am. B (1364/JOSAB.34.001421).
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Squashing Operation

A reduction in the trapping
frequency by a large amount

for 7 of a period causes

squashing. 3
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®Rashid et al. 2016, Phys. Rev. Lett. (10.1103/PhysRevLett.117.273601).
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Classical Equation of Motion Southampton

The classical equation with squeezing operations applied.

[33] - [—rov S, + Aszn(%(t))](—w%q)] *
0

+ | [2MgkgTy | dW,
m
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Squashing Simulations Southampton

Resulting phase space just after a squeezing operation has been applied.
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*Rashid et al. 2016, Phys. Rev. Lett. (10.1103/PhysRevlLett.117.273601).
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Squashing Simulations Southampton

Plot of the squeezing parameter reached in simulations of different
modulation depths along with the theoretical value which should be
reached.
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®Rashid et al. 2016, Phys. Rev. Lett. (10.1103/PhysRevLett.117.273601).
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Classical Equation of Motion Southampton

The classical equation with an added Duffing non-linearity.
dq v dt
dv| — |=Tov + [S, + Asin(2¢(t))](—wiq + > q°)

0

+ | [2lokgTo | dW,
m

®Gieseler, Novotny, and Quidant 2013, Nat Phys (10.1038/nphys2798).
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Squashing with Non-Linearity Southampton

The experimental phase-space plot of performing squeezing pulses with a
large modulation depth along with the simulated phase-space plot of
squeezing in a Duffing potential.
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Kalman Filter Southampton

Flow-diagram schematic of how a Kalman filter operates.
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Quantum Trajectory Simulation Soutﬁampton

Example of applying a Kalman filter to recover a sine wave from noisy
data.
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Tuning o¢ Southampton

How changing o effects the error in your estimated signal from the
original, un-corrupted, signal.
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Tuning o¢ Southampton
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Feedback Cooling Southampton

Flow-diagram of how we use the Kalman filter to cool the particle.
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Tuning o¢ for Optimal Cooling

P =5 x 10" 3mbar
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Tuning o¢ for Optimal Cooling

P =1x 10"3mbar
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Tuning o for Optimal Cooling
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Real-time Tracking

Real-time tracked signal and post-pr
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Experimental Results Southampton

Experimental results of applying a real-time FPGA based implementation
of this Kalman filter to feedback cool the motion of a particle at
5.7 x 10~° mbar.”
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"Setter et al. 2018, Phys. Rev. A (10.1103/PhysRevA.97.033822).
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Limitations - Detection Noise Southampton

Detection noise from the detector and oscilloscope limits how low in
temperature you can track the system with the Kalman filter.
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Detection Noise Sout Empton

Detection noise from the detector and oscilloscope limits how low in
temperature you can track the system with the Kalman filter.
P =1 x 1079 mbar
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Interim Summary Southampton

@ We have an accurate classical model of the system which agrees with
theory and experimental results

@ We have an accurate estimation algorithm in the Kalman filter which
has been implemented in real time

@ We have used this to experimentally perform real-time feedback
cooling down to a temperature of 162mK.

@ What about a quantum model of the system? As we get towards the
ground state this classical model will break down.
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Quantum Model

Southampton

Stochastic Master Equation describing the evolution of the density matrix
for a Gaussian state can be reduced to 5 coupled Stochastic Differential

Equations for the expectation values and variances of the position and
momentum.8 °

@ This model includes photon recoil and gas collisions
o Includes effect of continuous weak measurement
@ Includes measurement efficiency n = 0.3%

@ This model doesn't include any electronics noise

8Doherty and Jacobs 1999, Phys. Rev. A (10.1103/PhysRevA.60.2700).
Toro¥, Rashid, and Ulbricht 2018, arXiv (1804.01150).
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Quantum Trajectory Simulation Soutﬁjg}%sigt%n

Example output of the quantum simulation in phase-space, a Gaussian
state oscillating about the origin.
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Quantum Trajectory Simulation Southampton

Time trace showing how simulated variables in time. The particles
expectation values oscillate as in the classical simulation and the variances
quickly damp down to the values predicted by the Heisenburg uncertainty

principle.
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Quantum Simulation with Tracking Southampton

Tracking without feedback
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Quantum Cooling Simulation Southampton

Tracking with feedback P =1 x 1076 mbar, Ao = 0.01
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Quantum Cooling Simulation
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Tracking with feedback at lower pressures
mbar, Acoor = 0.01
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Quantum Cooling Simulation
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Zoom in of the previous plot after cooling has converged.
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Quantum Cooling Simulation

Southampton

Zoom in of simulation with higher modulation depth after cooling has
converged. P =1 x 1072 mbar, Ay = 0.05
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Summary Southampton

@ We have an accurate classical model of the system

@ We have developed a real-time Kalman filter on an FPGA using this
model

@ We have used this Kalman filter to cool the centre of mass motion to
162mK

o We have a quantum model of the system while it remains in a
Gaussian state

@ The quantum model shows that cooling to single phonon energies

should be feasible at very low pressures with sufficiently good tracking
and high enough modulation
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The Group’s Work Southampton

For more details on our other work, see our group's poster presented by
Chris Timberlake on Wednesday.
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