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What is a geometry ?

Connes’ reconstruction theorem

The whole metric and spin structure of a compact, orientable, Riemannian, spinc

manifold can be encoded in the ∗-algebra C∞(M) of smooth functions, Hilbert
space L2(S) of square-integrable spinors and the Dirac operator

/DM = iγµ (∂µ + ωµ) together with the γ5 grading and the charge conjugation
operator.

Spectral triple (A,H,D, γ, J)

A is a ∗-algebra represented on Hilbert space H, γ = γ†, γ2 = 1 is a Z/2Z-grading
commuting with A, J is an antilinear isometry s.th. [Ja∗J−1, b] = 0 for all

a, b ∈ A.
D is essentially self-adjoint operator with compact resolvent and s.th. [D, a] is

bounded for all a ∈ Dom(D) and Dγ = −γD.
Moreover DJ = εJD, J2 = ε′id and Jγ = ε′′γJ with ε, ε′, ε′′ = ±1 defining

KO-dimension.
There are additional compatibility conditions for D and for γ.
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Almost-commutative geometry for the Standard Model

(
C∞(M)⊗ (C⊕ H⊕M3(C)), L2(S)⊗Hf , /DM ⊗ 1 + γ5 ⊗Df , γ5 ⊗ γf , JM ⊗ Jf

)

Hf = HL ⊕HR ⊕Hc
L ⊕H

c
R

Df ∈M96(C)

γf - chirality operator
Jf - exchange particle with antiparticle and complex conjugates

Expansion of the Euclidean spectral action reproduces the effective action for the
SM and allows for the expression of bosonic parameters by fermionic one.
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Pseudo-Riemannian structure ?
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Finite pseudo-Riemannian spectral triple of signature (p, q)

(A,H,D, γ, J, β)

1. A is a ∗-algebra represented on an Hilbert space H
2. For p+ q even γ∗ = γ, γ2 = 1 is a Z/2Z-grading commuting with A
3. J is antilinear isometry with [Ja∗J−1, b] = 0

4. β = β†, β2 = 1 commuting with A
5. D† = (−1)pβDβ
6. [D, a] is bounded

7. Dγ = −γD
8. DJ = εJD, J2 = ε′id, Jγ = ε′′γJ

p− q mod 8 0 1 2 3 4 5 6 7
ε + − + + + − + +
ε′ + + − − − − + +
ε′′ + − + −
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Finite pseudo-Riemannian spectral triple of signature (p, q)

9. βγ = (−1)pγβ, βJ = (−1)
p(p−1)

2 εpJβ

10.
[
JaJ−1, [D, b]

]
= 0

11. orientability : there exist A 3 ai, ai0, ..., ain, i = 1, ..., k s.th.

k∑
i=1

JaiJ−1ai0[D, ai1]...[D, ain] =

{
γ, n even

1, n odd

12. time-orientation : there exist A 3 bi, bi0, ..., bip, i = 1, ..., k′ s.th.

β =
k′∑
i=1

JbiJ−1bi0[D, bi1]...[D, bip].
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Motivation

Clifford algebra : γaγb + γbγa = 2ηab1

γ = i
p−q
2 γ1...γp+q

there exists unitary B s.th. Bγi = εγ∗i B and BB∗ = ε′. Define Jψ := Bψ∗.

D = −
∑
j ηjjγj∂j

Bγ = ε′′γB

β = i
1
2
p(p−1)γ1...γp

βDβ = (−1)pD†
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Riemannian from pseudo-Riemannian

D+ =
1

2
(D +D†), D− =

i

2
(D −D†)

We get two Riemannian spectral triples (A, π,H,D±, J, γ), that differ by
KO-dimensions, with additional selfadjoint grading β s.th.

βD± = ±(−1)pD±β,

βγ = (−1)pγβ, βJ = (−1)
1
2
p(p−1)εpJβ.

DE = D+ +D−

JE = Jβ, or JE = Jβγ

(A, π,H,DE , JE , γ) is a Riemannian spectral triple of signature (0,−(p+ q)).
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Example : Functions over 2-point space

Take A = C2, H =
⊕
i,j
Hi,j with Hij = C for i, j = 1, 2.

We define J , γ as matrices:

γ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

, J =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ◦ ∗.
Now, we can easily identify a nontrivial additional symmetry (Z/2Z-grading) β
and construct a Dirac operator D+, which is real, satisfies first-order condition
and commutes with β:

β =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

, D+ =


0 d d∗ 0
d∗ 0 0 0
d 0 0 0
0 0 0 0

.
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It gives us a Riemannian real spectral triple of KO-dimension 0 with an additional
symmetry.

The restriction due to the β-symmetry gives only one free parameter into the
family of possible Dirac operators.
Similarly we construct D−, which satisfies D−β = −βD−.
Both these triples could be seen as Riemannian parts of a pseudo-Riemannian
spectral triple with signature (4, 4) or (0, 0).
The full Dirac operator D:

D =


0 d d∗ 0
d∗ 0 0 c
d 0 0 c∗

0 −c∗ −c 0

,
where c, d are arbitrary complex numbers.

Arkadiusz Bochniak1 No-go for leptoquarks...



It gives us a Riemannian real spectral triple of KO-dimension 0 with an additional
symmetry.
The restriction due to the β-symmetry gives only one free parameter into the
family of possible Dirac operators.

Similarly we construct D−, which satisfies D−β = −βD−.
Both these triples could be seen as Riemannian parts of a pseudo-Riemannian
spectral triple with signature (4, 4) or (0, 0).
The full Dirac operator D:

D =


0 d d∗ 0
d∗ 0 0 c
d 0 0 c∗

0 −c∗ −c 0

,
where c, d are arbitrary complex numbers.

Arkadiusz Bochniak1 No-go for leptoquarks...



It gives us a Riemannian real spectral triple of KO-dimension 0 with an additional
symmetry.
The restriction due to the β-symmetry gives only one free parameter into the
family of possible Dirac operators.
Similarly we construct D−, which satisfies D−β = −βD−.

Both these triples could be seen as Riemannian parts of a pseudo-Riemannian
spectral triple with signature (4, 4) or (0, 0).
The full Dirac operator D:

D =


0 d d∗ 0
d∗ 0 0 c
d 0 0 c∗

0 −c∗ −c 0

,
where c, d are arbitrary complex numbers.

Arkadiusz Bochniak1 No-go for leptoquarks...



It gives us a Riemannian real spectral triple of KO-dimension 0 with an additional
symmetry.
The restriction due to the β-symmetry gives only one free parameter into the
family of possible Dirac operators.
Similarly we construct D−, which satisfies D−β = −βD−.
Both these triples could be seen as Riemannian parts of a pseudo-Riemannian
spectral triple with signature (4, 4) or (0, 0).

The full Dirac operator D:

D =


0 d d∗ 0
d∗ 0 0 c
d 0 0 c∗

0 −c∗ −c 0

,
where c, d are arbitrary complex numbers.

Arkadiusz Bochniak1 No-go for leptoquarks...



It gives us a Riemannian real spectral triple of KO-dimension 0 with an additional
symmetry.
The restriction due to the β-symmetry gives only one free parameter into the
family of possible Dirac operators.
Similarly we construct D−, which satisfies D−β = −βD−.
Both these triples could be seen as Riemannian parts of a pseudo-Riemannian
spectral triple with signature (4, 4) or (0, 0).
The full Dirac operator D:

D =


0 d d∗ 0
d∗ 0 0 c
d 0 0 c∗

0 −c∗ −c 0

,
where c, d are arbitrary complex numbers.

Arkadiusz Bochniak1 No-go for leptoquarks...



The Standard Model

Af = C⊕ H⊕M3(C), Hf = (Hl ⊕Hq)⊕ (Hl̄ ⊕Hq̄)

Hl = 〈{νR, eR, (νL, eL)}〉

Hq = 〈{uR, dR, (uL, dL)}c=1,2,3〉

π(λ, h,m) = λ⊕ λ̄⊕ h on Hl and Hq

π(λ, h,m) = λ̄ on Hl̄ and 14 ⊗m on Hq̄

Df =

(
S T †

T S̄

)
, S =

(
Sl

Sq ⊗ 13

)
TνR = YRν̄R
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The Standard Model

Sl =


Y †ν

Y †e

Yν

Ye

, Sq =


Y †u

Y †d
Yu

Yd


γf - chirality grading
Jf - real structure

The existence of right neutrinos implies nonorientability of the geometry

It is well known that the above Dirac operator is not unique within the
model-building scheme of noncommutative geometry. Even the introduction
of more constraints, like the second-order condition or Hodge-duality does
not allow to exclude the terms, which would introduce the couplings
between lepton and quarks and lead to the leptoquark fields
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The Standard Model

There exists 0-cycle
β = π(1, 1,−1)JF π(1, 1,−1)J−1

F

that is a Z/2Z-grading which distinguish between leptons and quarks.

Moreover, this β makes the geometry to be a finite pseudo-Riemannian spectral
triple of signature (4k, 4k + 2 (mod 8)) with k ∈ N.

(Af , Hf , Df , γf , Jf , β) could be seen as a Riemannian restriction of a real even

pseudo-Riemannian spectral triple of signature (0, 2).
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Possible pseudo-Riemannian structures for the Standard Model

Take as a Hilbert space H ∼= F ⊕ F ∗ with

F 3 v =


νR u1

R u2
R u3

R

eR d1
R d2

R d3
R

νL u1
L u2

L u3
L

eL d1
L d2

L d3
L

 ∈M4(C).

Vectors from H can be represented as

[
v
w

]
, with v, w ∈M4(C).

The real structure

is given by

J

[
v
w

]
=

[
w∗

v∗

]
.

We can identify EndC(H) with M4(C)⊗M2(C)⊗M4(C) and denote by eij a

matrix with the the 1 in position (i, j) and zero everywhere else.
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Possible pseudo-Riemannian structures for the Standard Model

Elements of the algebra A = C⊕ H⊕M3(C) are represented by
λ

λ̄
0

0 q

⊗ e11 ⊗ 1 +

 λ 0
0 m

⊗ e22 ⊗ 1,

where λ ∈ C, q ∈ H and m ∈M3(C).

The grading is of the form

γ =

[
12

−12

]
⊗ e11 ⊗ 1 + 1⊗ e22 ⊗

[
−12

12

]
.

The Dirac operator is of the form

D = D0 +D1,

where D1 = JD0J−1.
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Possible pseudo-Riemannian structures for the Standard Model

We would like to have a spectral triple of KO-dimension 6, with a selfadjoint
Dirac operator, but such that commutes with a suitable β that represents the
shadow of a pseudo-Riemannian structure.

Let us now take the general form of a Dirac operator that satisfies an order-one
condition. We have

D0 =

[
M

M†

]
⊗ e11 ⊗ e11 +

[
N

N†

]
⊗ e11 ⊗ (1− e11)+

+

[
A B
0 0

]
⊗ e12 ⊗ e11 +

[
A† 0
B† 0

]
⊗ e21 ⊗ e11,

where M,N,A,B are 2× 2 complex matrices.
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Possible pseudo-Riemannian structures for the Standard Model

We look for a β that is a 0-cycle, i.e. a sum of elements of the form

β = π(λ1, q1,m1)Jπ(λ2, q2,m2)J−1,

with λ1, λ2 ∈ C, q1, q2 ∈ H, m1,m2 ∈M3(C).

Up to the trivial rescaling (by −1) we have three possibilities.

π(1, 1,−1)

π(1,−1, 1)

π(−1, 1, 1)

For the case β = π(1,−1, 1)Jπ(1,−1, 1)J−1 the restrictions for the Dirac operator
are M = N = 0 and no restriction for A,B. Furthermore, if
β = π(−1, 1, 1)Jπ(−1, 1, 1)J−1 then again M,N,B = 0 and A has to satisfy
A = A · diag(1,−1). It is worth noting that both of these restrictions lead not only
to unphysical Dirac operators that do not break the electroweak symmetry but
also do not satisfy the Hodge duality.

Finally, with the β = π(1, 1,−1)Jπ(1, 1,−1)J−1 we have no restriction whatsoever

for M,N while then B = 0 and A needs to satisfy: A = A · diag(1,−1). That

leaves the possibility that A11 and A21 coefficients are present, providing no

significant physical effects, and in particular leading only to terms involving a

sterile neutrino.
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A = A · diag(1,−1). It is worth noting that both of these restrictions lead not only
to unphysical Dirac operators that do not break the electroweak symmetry but
also do not satisfy the Hodge duality.

Finally, with the β = π(1, 1,−1)Jπ(1, 1,−1)J−1 we have no restriction whatsoever

for M,N while then B = 0 and A needs to satisfy: A = A · diag(1,−1). That

leaves the possibility that A11 and A21 coefficients are present, providing no

significant physical effects, and in particular leading only to terms involving a

sterile neutrino.
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Summary

We proposed new definition of the finite pseudo-Riemannian spectral triples

We proposed an alternative explanation of the observed quarks-leptons
symmetry which prevents the SU(3)-breaking, as a shadow of the
pseudo-Riemannian structure

We proposed that the consistent model-building for the physical interactions
and possible extensions of the Standard Model within the noncommutative
geometry framework should use possibly the pseudo-Riemannian extension
of finite spectral triples. We demonstrated that the pseudo-Riemannian
framework allows for more restrictions and, in the discussed case introduces
an extra symmetry grading, which we interpreted as the lepton-quark
symmetry
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