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Introduction to noncommutative geometry (NC)

• Local coordinates xµ are replaced by the hermitean operators x̂µ

• Algebra of the operators [x̂µ, x̂ν ] = iθµν

• For θ = const ⇒ ∆x̂µ∆x̂ν ≥ 1
2 |θ

µν |
• The notion of a point loses its meaning ⇒ we describe NC space
with NC algebra of functions (following the work of Gelfand and
Naimark) [J. Wess et al.]

Approaches to NC geometry : ?-product, NC spectral triplet, NC
vielbien formalism, matrix models,. . .
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?-product
• (Â, ·)→ (A, ?)

• Most used ?-product is Moyal-Weyl [Szabo 01, 06]

(f ? g)(x) = exp(i
θµν

2
∂

∂yµ
∂

∂zν
)f (y)g(z) |y ,z→x

• It gives commutation relations between coordinates

[xµ ?, xν ] = iθµν

• One more important NC space-time is κ-Minkowski space-time
[Lukierski et al, Dimitrijević and Jonke]

[x0 ?, x i ] = iax i

and all other commutators are zero

Nikola Konjik (University of Belgrade) Benasque, Aragon, Spain 23-30 September 2018 4 / 19



?-product
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• (Â, ·)→ (A, ?)

• Most used ?-product is Moyal-Weyl [Szabo 01, 06]

(f ? g)(x) = exp(i
θµν

2
∂

∂yµ
∂

∂zν
)f (y)g(z) |y ,z→x

• It gives commutation relations between coordinates

[xµ ?, xν ] = iθµν

• One more important NC space-time is κ-Minkowski space-time
[Lukierski et al, Dimitrijević and Jonke]

[x0 ?, x i ] = iax i

and all other commutators are zero

Nikola Konjik (University of Belgrade) Benasque, Aragon, Spain 23-30 September 2018 4 / 19



Twist formalism
• A well defined way to deform symmetries (symm. alg. g with
generators ta)

• Twist F [Drienfeld, 85] is invertible operator which belongs to
Ug ⊗ Ug

• With twist, we deform Hopf algebra

[ta, tb] = if ab
c tc , ∆(ta) = ta ⊗ 1 + 1⊗ ta,

ε(ta) = 0, S(ta) = −ta.

• Abelian twist
F−1 = e iθAB XA⊗XB

where XA and XB are commuting vector fields and θAB is an
antisymmetric constant matrix [Aschieri, Castelani 2010s]
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• Deformation of differential calculus

f ? g = µF−1(f ⊗ g) ω1 ∧? ω2 = ∧F−1(ω1 ⊗ ω2).

• Action of the vector field on the differential forms is given by the
Lie derivative along that vector field XA . ω = `XA

ω

• Twisted Hopf algebra is

[ta, tb] = if ab
c tc ,

∆F (ta) = F∆(ta)F−1,

ε(ta) = 0, SF (ta) = fαS(fα)S(ta)S (̄fβ)fβ.

where is
F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α,
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Angular twist
• First time introduced in [M.D.Ć, N.K, A.S, CQG 2018.] and
calculated EOM for the scalar field in RN geometry for the
quasinormal modes boundary conditions

• Angular twist

F = e−
ia
2

(
∂z⊗(x∂y−y∂x )−(x∂y−y∂x )⊗∂z

)
= e−

ia
2

(
∂z⊗∂ϕ−∂ϕ⊗∂z

)
,

gives commutation relations between coordinates

[z ?, x ] = −iay , [z ?, y ] = iax .

or
[z ?, ϕ] = ia or [z ?, e iϕ] = −ae iϕ

• Twist similar to κ−Minkowski [t ?, x i ] = iax i but more simpler
• Vector fields in the angular twist are Poincare generatore, while in
the κ−Minkowski we have dilatation generator
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Angular noncommutativity

• Product of two plane waves is

e−ip·x ? e−iq·x = e−i(p+?q)·x

where is p +? q = R(q3)p + R(−p3)q and

R(t) ≡


1 0 0 0
0 cos

(
at
2

)
sin
(

at
2

)
0

0 − sin
(

at
2

)
cos
(

at
2

)
0

0 0 0 1


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Angular noncommutativity

• e−ip·x ? e−iq·x ? e−ir ·x = e−i(p+?q+?r)·x gives

p +? q +? r = R(r3 + q3)p + R(−p3 + r3)q + R(−p3 − q3)r

• General case

p(1) +? ...+? p(N) =
N∑

j=1

R

− ∑
1≤k<j

p
(k)
3 +

∑
j<k≤N

p
(k)
3

 p(j)

• Conservation of momentum is broken!
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Deformation of the coproduct of translation
generators

• Coproducts for P0 and P3 are undeformed

• ∆FP1 =
P1⊗cos

(
a
2P3
)

+cos
(

a
2P3
)
⊗P1 +P2⊗ sin

(
a
2P3
)
− sin

(
a
2P3
)
⊗P2

• ∆FP2 =
P2⊗cos

(
a
2P3
)

+cos
(

a
2P3
)
⊗P2−P1⊗ sin

(
a
2P3
)

+sin
(

a
2P3
)
⊗P1

• Suppose that a field (or a state) φp is an eigenvector of the
momentum operator Pµ with the eigenvalue pµ: Pµφp = pµφp

• Then Pµ(φp ? φq) = µ?{∆FPµ(φp ⊗ φq)} = (p +? q)(φp ? φq)

Nikola Konjik (University of Belgrade) Benasque, Aragon, Spain 23-30 September 2018 10 / 19



Deformation of the coproduct of translation
generators

• Coproducts for P0 and P3 are undeformed
• ∆FP1 =

P1⊗cos
(

a
2P3
)

+cos
(

a
2P3
)
⊗P1 +P2⊗ sin

(
a
2P3
)
− sin

(
a
2P3
)
⊗P2

• ∆FP2 =
P2⊗cos

(
a
2P3
)

+cos
(

a
2P3
)
⊗P2−P1⊗ sin

(
a
2P3
)

+sin
(

a
2P3
)
⊗P1

• Suppose that a field (or a state) φp is an eigenvector of the
momentum operator Pµ with the eigenvalue pµ: Pµφp = pµφp

• Then Pµ(φp ? φq) = µ?{∆FPµ(φp ⊗ φq)} = (p +? q)(φp ? φq)

Nikola Konjik (University of Belgrade) Benasque, Aragon, Spain 23-30 September 2018 10 / 19



Deformation of the coproduct of translation
generators

• Coproducts for P0 and P3 are undeformed
• ∆FP1 =

P1⊗cos
(

a
2P3
)

+cos
(

a
2P3
)
⊗P1 +P2⊗ sin

(
a
2P3
)
− sin

(
a
2P3
)
⊗P2

• ∆FP2 =
P2⊗cos

(
a
2P3
)

+cos
(

a
2P3
)
⊗P2−P1⊗ sin

(
a
2P3
)

+sin
(

a
2P3
)
⊗P1

• Suppose that a field (or a state) φp is an eigenvector of the
momentum operator Pµ with the eigenvalue pµ: Pµφp = pµφp

• Then Pµ(φp ? φq) = µ?{∆FPµ(φp ⊗ φq)} = (p +? q)(φp ? φq)

Nikola Konjik (University of Belgrade) Benasque, Aragon, Spain 23-30 September 2018 10 / 19



Deformation of the coproduct of translation
generators

• Coproducts for P0 and P3 are undeformed
• ∆FP1 =

P1⊗cos
(

a
2P3
)

+cos
(

a
2P3
)
⊗P1 +P2⊗ sin

(
a
2P3
)
− sin

(
a
2P3
)
⊗P2

• ∆FP2 =
P2⊗cos

(
a
2P3
)

+cos
(

a
2P3
)
⊗P2−P1⊗ sin

(
a
2P3
)

+sin
(

a
2P3
)
⊗P1

• Suppose that a field (or a state) φp is an eigenvector of the
momentum operator Pµ with the eigenvalue pµ: Pµφp = pµφp

• Then Pµ(φp ? φq) = µ?{∆FPµ(φp ⊗ φq)} = (p +? q)(φp ? φq)

Nikola Konjik (University of Belgrade) Benasque, Aragon, Spain 23-30 September 2018 10 / 19



Scalar field theory

S [φ] =

∫
R4

d4x

(
1
2
∂µφ(x) ? ∂µφ(x) +

1
2

m2φ(x) ? φ(x) +
λ

4!
φ(x)?4

)

In momentum space, action has the form

S [φ] =

∫
R4×R4

dp dq
1
2

(
−pµqµφ̃(p)φ̃(q) + m2φ̃(p)φ̃(q)

)
δ(4) (p +? q)

+
1

(2π)4
λ

4!

∫
(R4)×4

dp dq dr ds φ̃(p)φ̃(q)φ̃(r)φ̃(s)δ(4) (p +? q +? r +? s)
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Scalar field theory

All NC corrections are in the delta function with 4 terms because

δ(4) (p +? q) = δ(4)(R(q3)p+R(−p3)q) = δ(4)(R(q3)(p+q)) = δ(4)(p+q)

We have two types of the diagrams; planar and non-planar (depends
on how we contracted momenta)
Planar diagrams are the same as in commutative case
NC corections are just in non-planar diagrams
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sq p(1)

p(2)

p(4)

p(3)

(a) (b)

q s

p(2)

p(1)

p(3)

p(4)

Value of the UV divergent part of the planar diagram

Pl(a) =
1

q2 + m2 ·
1

s2 + m2 · δ
(4)(q − s)π2

(
Λ2 −m2 log

Λ

µ

)

Value of the UV divergent part of the non-planar diagram

NPl(b) =
1

q2 + m2
1

s2 + m2 δ(q0−s0) δ(q3−s3)
π2

2
(
sin
(aq3

2

))2 ln

(
Λ

µ

)
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UV/IR mixing in the Moyal case [Minwala et al
99, Szabo 01,06]
• Planar diagrams are without NC corrections

ΓPl =
g2

96π2 (Λ2 −m2ln(
Λ2

m2 ) + fin. part)

• Non-planar diagrams have NC corrections [Minwala et al, 99]

ΓNPl =
g2

48π2 (Λ2
eff −m2ln(

Λ2
eff

m2 ) + fin. part)

where is Λ2
eff = 1

1
Λ2−p◦p and p ◦ p = |pµθ2

µνpν |

• For p ◦ p = finite the NPl diagram is finite
• The NPl diagram is divergent for p → 0 (UV/IR mixing) or for
θ → 0
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UV/IR mixing in the angular case

• NC reduces the degree of divergency from quadratic to logarhitmic

• Lost smooth limit from NC to commutative case
• Presence of some unusual UV/IR mixing
• In 3D we have finite non-planar diagrams
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Particle decay
• Application of the ?-sum of momenta to the kinematics of
particles decay

• Dispersion relation is undeformed because propagator is
undeformed

E 2 = ~p2 + m2

and because Casimir operators are undeformed (twist does not
change the algebra structure)

• For this chapter, we will change type of NC: we will change
z-coordinate with time coordinate

• We will look at kinematically decay of one particle in the rest to
the two other particles. Momentum law conservation is

p+?(−q)+?(−r) = R(−q0−r0)·p−R(−p0−r0)·q−R(−p0+q0)·r
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Particle decay

• These four equations are

M = Eq + Er

0 = qz + rz

0 = cos (
a

2
(M + Er ))qx−sin (

a

2
(M + Er ))qy +cos (

aEr

2
)rx−sin (

aEr

2
)ry

0 = cos (
a

2
(M + Er ))qy +sin (

a

2
(M + Er ))qx +cos (

aEr

2
)ry +sin (

aEr

2
)rx

• NC effects are obviousy in the xy-plane
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• Equations for x and y plane gives

0 = R(
aEr

2
)R(

aM

2
)~qxy + R(

aEr

2
)~rxy = R(

aM

2
)~qxy + ~rxy

~qxy -projection of the momentum on the xy-plane
R-rotational matrix which rotate one of the opposite momenta for
angle aM

2

• Boosts will change angle between particles: different angles from
different reference systems

Example: Z 0 → µ+ + µ−

M(Z ) ≈ 90GeV m(µ) ≈ 105MeV |~pµ+ | = |~pµ− | ≈ 45GeV

∠(~pµ− , ~pµ+) = π − aM
2

a ∼ (10TeV )−1 ⇒ aM
2 ∼ 5 · 10−3 and

a ∼ (100TeV )−1 ⇒ aM
2 ∼ 5 · 10−4
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Conclusion

• Simple Lie algebra NC

• Connection between deformed Hopf algebra and ?-sums
• Momentum and boost conservation laws broken
• UV/IC "mixing"
• Phenomenological aspects of particle decay
• Future work: better understanding of the connection between
deformed conservation laws and deformed Hopf algebra, spectrum
of QNMs with some numerical methods
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