A Chern–Simons view of noncommutative scalar theory

Leonardo Santilli

Joint work with Miguel Tierz: arXiv:1805.10543 [hep-th]

Grupo de Fisica Matematica Universidade de Lisboa

QSpace Training School Benasque, Spain. September 24th, 2018.

Introduction

LSZ model

Exact solution and relation to Chern-Simons theory

1. Introduction

Idea beyond noncommutative field theory: replace coordinates with noncommutative operators

Idea beyond noncommutative field theory: replace coordinates with noncommutative operators (quantum mechanics, charged particles in transverse magnetic field, ...).

Idea beyond noncommutative field theory: replace coordinates with noncommutative operators (quantum mechanics, charged particles in transverse magnetic field, ...).

Geometry of the manifold is encoded in the algebra of functions \implies deformation of product changes the underlying geometry.

Idea beyond noncommutative field theory: replace coordinates with noncommutative operators (quantum mechanics, charged particles in transverse magnetic field, ...).

Geometry of the manifold is encoded in the algebra of functions \implies deformation of product changes the underlying geometry.

Product of functions is modified to obtain

$$\left[x^{i},x^{j}\right]=\mathrm{i}\theta^{ij}(x).$$

Simplest examples of noncommutative field theories arise from simple choices of $\theta^{ij}(x)$.

Simplest examples of noncommutative field theories arise from simple choices of $\theta^{ij}(x)$.

▶ Moyal plane: \mathbb{R}^2 with $\theta^{ij} = \theta \epsilon^{ij}$ a constant. Generalization to any even dimension with constant block-diagonal structure.

Simplest examples of noncommutative field theories arise from simple choices of $\theta^{ij}(x)$.

- ▶ Moyal plane: \mathbb{R}^2 with $\theta^{ij} = \theta \epsilon^{ij}$ a constant. Generalization to any even dimension with constant block-diagonal structure.
- ► **Fuzzy sphere**: \mathbb{S}^2 with truncation of algebra of functions. $\theta^{ij}(x)$ related to generators of rotations in \mathbb{R}^3 .

Simplest examples of noncommutative field theories arise from simple choices of $\theta^{ij}(x)$.

- ► Moyal plane: ℝ² with θ^{ij} = θε^{ij} a constant. Generalization to any even dimension with constant block-diagonal structure.
- ► **Fuzzy sphere**: \mathbb{S}^2 with truncation of algebra of functions. $\theta^{ij}(x)$ related to generators of rotations in \mathbb{R}^3 .
- R³_λ: 3d Euclidean space with coordinates replaced by su(2) generators multiplied by a length scale λ. It foliates into fuzzy spheres of discrete radii.

The purpose of our work¹ is twofold:

¹ArXiv: 1805.10543.

L. Santilli (GFM-U.Lisboa)

CS and Noncommutative scalar FT

QSpace Benasque 2018 6 / 20

Our goal

The purpose of our work¹ is twofold:

 to show the equivalence between the LSZ scalar field theory on the Moyal plane [Langmann-Szabo-Zarembo, 2003 and 2004] and the reduction of an abelian field theory on R³_λ [Geré-Juric-Wallet, 2015 and Wallet, 2016];

¹ArXiv: 1805.10543.

L. Santilli (GFM-U.Lisboa)

Our goal

The purpose of our work¹ is twofold:

- ► to show the equivalence between the LSZ scalar field theory on the Moyal plane [Langmann-Szabo-Zarembo, 2003 and 2004] and the reduction of an abelian field theory on ℝ³_λ [Geré-Juric-Wallet, 2015 and Wallet, 2016];
- ► to exactly solve the model as a particular case of topological invariant associated to Chern–Simons topological field theory on S³.

¹ArXiv: 1805.10543.

Our goal

The purpose of our work¹ is twofold:

- ► to show the equivalence between the LSZ scalar field theory on the Moyal plane [Langmann-Szabo-Zarembo, 2003 and 2004] and the reduction of an abelian field theory on ℝ³_λ [Geré-Juric-Wallet, 2015 and Wallet, 2016];
- ► to exactly solve the model as a particular case of topological invariant associated to Chern–Simons topological field theory on S³.

Throughout this talk the focus will be on the latter.

¹ArXiv: 1805.10543.

2. LSZ model

LSZ is a scalar theory on noncommutative phase space:

LSZ is a scalar theory on noncommutative phase space:

• Moyal plane, spatial coordinates satisfy $[x^i, x^j] = i\theta \epsilon^{ij}$;

LSZ is a scalar theory on noncommutative *phase space*:

- Moyal plane, spatial coordinates satisfy $[x^i, x^j] = i\theta \epsilon^{ij}$;
- ► transverse background magnetic field, *covariant* momenta satisfy [P_i, P_j] = -iBe_{ij};

LSZ is a scalar theory on noncommutative phase space:

- Moyal plane, spatial coordinates satisfy $[x^i, x^j] = i\theta \epsilon^{ij}$;
- ► transverse background magnetic field, *covariant* momenta satisfy [P_i, P_j] = -iBe_{ij};

• quantization,
$$[x^i, p_j] = i\delta^i_j$$
.

LSZ is a scalar theory on noncommutative phase space:

- Moyal plane, spatial coordinates satisfy $[x^i, x^j] = i\theta \epsilon^{ij}$;
- ► transverse background magnetic field, *covariant* momenta satisfy [P_i, P_j] = -iBe_{ij};

• quantization,
$$[x^i, p_j] = i\delta^i_j$$
.

Each 2d subspace allows a harmonic oscillator (h.o.) description. We will take a mixture of all ingredients to obtain **two commuting copies** of h.o.

The LSZ scalar theory

We define an action for a scalar field with quadratic and quartic interaction:

$$S_{\rm LSZ} = \int_{R_{\theta}^2} \left\{ \frac{1}{2} \Phi^{\dagger} \left(-\sigma D^2 - \tilde{\sigma} \tilde{D}^2 \right) \Phi + \frac{1}{2} \Phi \left(-\sigma D^2 - \tilde{\sigma} \tilde{D}^2 \right) \Phi^{\dagger} \right. \\ \left. m_0^2 \Phi^{\dagger} \Phi + \frac{g_0^2}{2} \left(\Phi^{\dagger} \Phi \right)^2 \right\},$$
(2.1)

where D_i is the covariant derivative and D_i involves a reflection $B \mapsto -B$.

The LSZ matrix model

At $\sigma = \tilde{\sigma}$ and $\theta^2 B^2 = 4$ this model has a huge amount of symmetry [Langmann-Szabo, 2002] and reduces to the matrix model:

The LSZ matrix model

At $\sigma = \tilde{\sigma}$ and $\theta^2 B^2 = 4$ this model has a huge amount of symmetry [Langmann-Szabo, 2002] and reduces to the matrix model:

$$S_{\rm LSZ} = N {\rm Tr} \left\{ M^{\dagger} E M + M \tilde{E} M^{\dagger} + \hat{m}^2 M^{\dagger} M + \frac{\hat{g}^2}{2} \left(M^{\dagger} M \right)^2 \right\},$$
(2.2)

where the $\hat{\cdot}$ means adimensional coupling and the external matrices E, \tilde{E} have h.o. spectra.

Our approach to LSZ

Nevertheless, we will solve the LSZ matrix model in a **generalized setting**, for external matrices with arbitrary spectra, and eventually recover the original model by setting eigenvalues of both to be the Landau levels.

3. Exact solution and relation to Chern–Simons theory

Generalized solution, step I

The partition function of the matrix model obtained above can be exactly solved.

We do it in a generalized sense, allowing the external matrices E, \tilde{E} to have eigenvalues of the form of arbitrary integers $\eta_{\ell}, \tilde{\eta}_{\ell}$ times a factor $4\pi/N$.

Generalized solution, step I

The partition function of the matrix model obtained above can be exactly solved.

We do it in a generalized sense, allowing the external matrices E, \tilde{E} to have eigenvalues of the form of arbitrary integers $\eta_{\ell}, \tilde{\eta}_{\ell}$ times a factor $4\pi/N$.

We use the decomposition

$$M = U_1^{\dagger} \operatorname{diag} (\lambda_1, \ldots, \lambda_N) U_2,$$

with unitary U_{α} . The Jacobian of this transformation introduces a squared Vandermonde determinant.

Generalized solution, step II

We take advantage of the Harish-Chandra/Itzykson–Zuber formula to integrate out the angular degrees of freedom U_{α} .

Generalized solution, step II

We take advantage of the Harish-Chandra/Itzykson–Zuber formula to integrate out the angular degrees of freedom U_{α} .

After simplifying with the Vandermonde squared, we arrive to:

$$Z\left(E,\tilde{E}\right) = \frac{\mathcal{C}_{N}}{\Delta_{N}\left[\eta\right]\Delta_{N}\left[\tilde{\eta}\right]}\int\prod_{\ell=1}^{N}\mathrm{d}y_{\ell}e^{-\sum\left(m^{2}y_{\ell}+\frac{g^{2}}{2}y_{\ell}^{2}\right)} \times \det\left(e^{-\eta_{\ell}y_{m}}\right)\det\left(e^{-\tilde{\eta}_{\ell}y_{m}}\right),$$
(3.1)

with coefficient $C_N = 2^{-N(N+1)/2}/Vol(U(N))$.

Generalized solution, step III

We rewrite the integers eigenvalues $\eta_\ell, \tilde{\eta}_\ell$ in the form

$$\begin{split} \eta_\ell &= -\mu_\ell - \mathbf{N} + \ell, \\ \tilde{\eta}_\ell &= -\nu_\ell - \mathbf{N} + \ell, \end{split}$$

for arbitrary partitions μ, ν .

Generalized solution, step IIIb

In this way, the determinants in the partition function can be rewritten in terms of Schur polynomials. We arrive to:

$$\begin{split} Z\left(E,\tilde{E}\right) &= \frac{\mathcal{C}_{N}}{\Delta_{N}\left[\eta\right]\Delta_{N}\left[\tilde{\eta}\right]} \int \prod_{\ell=1}^{N} \mathrm{d}y_{\ell} e^{-\sum \left(\beta y_{\ell} + \frac{g^{2}}{2}y_{\ell}^{2}\right)} \\ &\prod_{\ell < m} \left(2\sinh\left(\frac{y_{\ell} - y_{m}}{2}\right)\right)^{2} \\ &\times s_{\mu}\left(e^{y_{1}}, \dots, e^{y_{N}}\right)s_{\nu}\left(e^{y_{1}}, \dots, e^{y_{N}}\right), \end{split}$$
(3.2) where $\beta = m^{2} - N + 1.$

Generalized solution, step IIIc

We recognise an expression similar to the Hopf link invariant for U(N) Chern–Simons theory on \mathbb{S}^3 [Dolivet–Tierz, 2006]. For the two expression to coincide, we ought to conjugate the partition $\nu \mapsto \nu^*$.

Generalized solution, step IV

Doing the conjugation, one finally arrives to

$$Z\left(E,\tilde{E}\right) = C \cdot \langle W_{\mu\nu^*} \rangle, \qquad (3.3)$$

where $C \propto \frac{S_{00}}{\dim \mu \dim \nu}$ and $\langle W_{\mu\nu^*} \rangle = (TST)_{\mu\nu^*}$ is the Hopf link average.

Generalized solution, step IV

Doing the conjugation, one finally arrives to

$$Z\left(E,\tilde{E}\right) = C \cdot \langle W_{\mu\nu^*} \rangle, \qquad (3.3)$$

where $C \propto \frac{S_{00}}{\dim \mu \dim \nu}$ and $\langle W_{\mu\nu^*} \rangle = (TST)_{\mu\nu^*}$ is the Hopf link average. This is a topological invariant of \mathbb{S}^3 .

LSZ solution

The original LSZ model is recovered turning off both partitions.

$Z_{\rm LSZ} \propto Z_{\rm CS}$.

The partition function of LSZ is then proportional to CS partition function and to the so-called Witten–Reshetikhin–Turaev topological invariant.

This is the end of the presentation. Thank you for your attention