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Introduction

Noncommutative theories: generalities

Idea beyond noncommutative field theory: replace coordinates
with noncommutative operators

(quantum mechanics, charged
particles in transverse magnetic field, ...).

Geometry of the manifold is encoded in the algebra of functions
=⇒ deformation of product changes the underlying geometry.

Product of functions is modified to obtain[
x i , x j

]
= iθij(x).
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Introduction

Noncommutative theories: examples

Simplest examples of noncommutative field theories arise from
simple choices of θij(x).

I Moyal plane: R2 with θij = θεij a constant. Generalization
to any even dimension with constant block-diagonal structure.

I Fuzzy sphere: S2 with truncation of algebra of functions.
θij(x) related to generators of rotations in R3.

I R3
λ: 3d Euclidean space with coordinates replaced by su(2)

generators multiplied by a length scale λ. It foliates into
fuzzy spheres of discrete radii.
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Introduction

Our goal

The purpose of our work1 is twofold:

I to show the equivalence between the LSZ scalar field theory
on the Moyal plane [Langmann–Szabo–Zarembo, 2003 and 2004]
and the reduction of an abelian field theory on R3

λ

[Geré–Juric–Wallet, 2015 and Wallet, 2016];
I to exactly solve the model as a particular case of topological

invariant associated to Chern–Simons topological field theory
on S3.

Throughout this talk the focus will be on the latter.

1ArXiv: 1805.10543.
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2. LSZ model
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LSZ model

LSZ: the base manifold

LSZ is a scalar theory on noncommutative phase space:

I Moyal plane, spatial coordinates satisfy
[
x i , x j] = iθεij ;

I transverse background magnetic field, covariant momenta
satisfy [Pi ,Pj ] = −iBεij ;

I quantization,
[
x i , pj

]
= iδi

j .

Each 2d subspace allows a harmonic oscillator (h.o.) description.
We will take a mixture of all ingredients to obtain two
commuting copies of h.o.
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LSZ model

The LSZ scalar theory

We define an action for a scalar field with quadratic and quartic
interaction:

SLSZ =
∫

R2
θ

{1
2Φ†

(
−σD2 − σ̃D̃2

)
Φ + 1

2Φ
(
−σD2 − σ̃D̃2

)
Φ†

m2
0Φ†Φ + g2

0
2
(

Φ†Φ
)2
}
,

(2.1)
where Di is the covariant derivative and D̃i involves a reflection
B 7→ −B.
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LSZ model

The LSZ matrix model

At σ = σ̃ and θ2B2 = 4 this model has a huge amount of
symmetry [Langmann–Szabo, 2002] and reduces to the matrix model:

SLSZ = NTr
{

M†EM + MẼM† + m̂2M†M + ĝ2

2
(
M†M

)2
}
,

(2.2)
where the ·̂ means adimensional coupling and the external
matrices E , Ẽ have h.o. spectra.
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2
(
M†M

)2
}
,

(2.2)
where the ·̂ means adimensional coupling and the external
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LSZ model

Our approach to LSZ

Nevertheless, we will solve the LSZ matrix model in a generalized
setting, for external matrices with arbitrary spectra, and
eventually recover the original model by setting eigenvalues of
both to be the Landau levels.
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Exact solution and relation to Chern–Simons theory

3. Exact solution and relation to
Chern–Simons theory
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Exact solution and relation to Chern–Simons theory

Generalized solution, step I

The partition function of the matrix model obtained above can be
exactly solved.
We do it in a generalized sense, allowing the external matrices
E , Ẽ to have eigenvalues of the form of arbitrary integers η`, η̃`
times a factor 4π/N.

We use the decomposition

M = U†1diag (λ1, . . . , λN) U2,

with unitary Uα. The Jacobian of this transformation introduces a
squared Vandermonde determinant.

L. Santilli (GFM–U.Lisboa) CS and Noncommutative scalar FT QSpace Benasque 2018 13 / 20



Exact solution and relation to Chern–Simons theory

Generalized solution, step I

The partition function of the matrix model obtained above can be
exactly solved.
We do it in a generalized sense, allowing the external matrices
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Exact solution and relation to Chern–Simons theory

Generalized solution, step II

We take advantage of the Harish-Chandra/Itzykson–Zuber
formula to integrate out the angular degrees of freedom Uα.

After simplifying with the Vandermonde squared, we arrive to:

Z
(
E , Ẽ

)
= CN

∆N [η] ∆N [η̃]

∫ N∏
`=1

dy`e
−
∑(

m2y`+ g2
2 y2

`

)

×det
(
e−η`ym

)
det

(
e−η̃`ym

)
,

(3.1)

with coefficient CN = 2−N(N+1)/2/Vol(U(N)).
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Exact solution and relation to Chern–Simons theory

Generalized solution, step III

We rewrite the integers eigenvalues η`, η̃` in the form

η` = −µ` − N + `,

η̃` = −ν` − N + `,

for arbitrary partitions µ, ν.
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Exact solution and relation to Chern–Simons theory

Generalized solution, step IIIb

In this way, the determinants in the partition function can be
rewritten in terms of Schur polynomials. We arrive to:

Z
(
E , Ẽ

)
= CN

∆N [η] ∆N [η̃]

∫ N∏
`=1

dy`e
−
∑(

βy`+ g2
2 y2

`

)
∏
`<m

(
2 sinh

(y` − ym
2

))2

× sµ (ey1 , . . . , eyN ) sν (ey1 , . . . , eyN ) ,
(3.2)

where β = m2 − N + 1.
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Exact solution and relation to Chern–Simons theory

Generalized solution, step IIIc

We recognise an expression similar to the Hopf link invariant for
U(N) Chern–Simons theory on S3 [Dolivet–Tierz, 2006].
For the two expression to coincide, we ought to conjugate the
partition ν 7→ ν∗.
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Exact solution and relation to Chern–Simons theory

Generalized solution, step IV

Doing the conjugation, one finally arrives to

Z
(
E , Ẽ

)
= C · 〈Wµν∗〉, (3.3)

where C ∝ S00
dimµ dim ν and 〈Wµν∗〉 = (TST )µν∗ is the Hopf link

average.

This is a topological invariant of S3.
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Exact solution and relation to Chern–Simons theory

LSZ solution

The original LSZ model is recovered turning off both partitions.

ZLSZ ∝ ZCS.

The partition function of LSZ is then proportional to CS partition
function and to the so-called Witten–Reshetikhin–Turaev
topological invariant.
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This is the end of the presentation.

Thank you for your attention
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