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José M. Gracia-Bondı́a Looking back to the Moyal revolution



Topics

Success of the “Moyal” paradigm
A classical statistical mechanics look to it
The “functional” rather more than the “deformation”
approach
Traciality
Extension of the Moyal product by duality and nets of
Hilbert algebras
The covariant context (Fourier–Kirillov–Moyal)
Relativistic particles
The NCG connection
“Physical Wigner functions” in quantum chemistry
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Moyal technology

The fourth formulation of quantum mechanics, due originally
in stages to Weyl, Wigner, Groenewold and Moyal, by now has
undergone almost all of the stages of success.

The ambit of its applications, including to mathematics,
besides quantum mechanics proper – and its foundational
issues – today encompasses:

Quantum optics
The theory of sound
Quantum chemistry
Non-commutative geometry
Non-commutative field theory
Deformation theory
Special function theory
Harmonic analysis (...)
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Topics to be addressed

That ambit is sure to keep burgeoning with new
discoveries – and rediscoveries. A proper appraisal is
beyond the powers of an individual.

An advantage of the Moyal scheme for quantum
mechanics that quantum and classical averages obey
the same rule. I choose to look back at one mathematical
aspect at the root of the success – that is traciality.
Nota bene: from the beginning “~ = 1” (fixed anyway). I
do not take the viewpoint of deformation theory, rather I
will regard WWGM quantum mechanical theories as
standing on their own feet.

To finish I revisit physical assumptions behind the
success, pursuing the vision of the old masters, with
examples in realms of relativistic and statistical physics.
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Traciality in a nutshell I

A tracial (Stratonovich–Weyl) quantizer is an self-adjoint

operator-valued distributionΩ(x) relating a classical system
on a phase space X with operators on an associated Hilbert
space H, verifying

TrΩ(x) = 1; (1)

Tr
(
Ω(x)Ω(x′)

)
= δ(x − x′). (2)

These are not trace-class operators in general; the trace is
understood in a distributional sense! If one uses the family Ω

(the “quantizer”) to convert a “symbol” on X into an operator
on H by the rule

a 7→
∫
X
a(x)Ω(x) =:Q(a),

then, from (1) to begin with, T rQ(a) =
∫
X
a(x) – I suppress the

measure on X in the notation.
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Traciality in a nutshell II

The inverse map is given by

a(x) = Tr
(
Ω(x)Q(a)

)
;

so Ω(.) is also the dequantizer!

Moreover, we have a Hilbert algebra relation:

Tr
(
Q(a)Q(b)) =

∫
X
a(x)b(x).

There are of course useful relations between symbols and
operators, for which the quantizer , the dequantizer. But then
the aforemetioned advantage is lost.

Traciality moreover yields mathematical dividends, often
useful in physics. The main one: they lead most naturally to
algebras of unbounded operators – the humble position and
momentum operators are unbounded...
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The main trick

. . . is to push an extension of quantization to distributions
using the duality allowed by (2). Let

(Moyal product) a× b(x) := Tr[Q(x)Q(a)Q(b)];

then it holds
∫
X
a× b(x) =

∫
X
a(x)b(x).

One proves S× S = S (Schwartz functions). In view of the above
S′ × S and S× S′ are defined.

By the way: for this (Heisenberg) case Ω(x) = 2Π(x), with Π the
parity operator on phase space (Grossmann and Royer).

By the way, too: it is perfectly true that

f × g = f g + i
2
{f ,g}+ · · ·

convergent under favourable conditions envisageable here.

José M. Gracia-Bondı́a Looking back to the Moyal revolution



The main trick

. . . is to push an extension of quantization to distributions
using the duality allowed by (2). Let

(Moyal product) a× b(x) := Tr[Q(x)Q(a)Q(b)];

then it holds
∫
X
a× b(x) =

∫
X
a(x)b(x).

One proves S× S = S (Schwartz functions). In view of the above
S′ × S and S× S′ are defined.

By the way: for this (Heisenberg) case Ω(x) = 2Π(x), with Π the
parity operator on phase space (Grossmann and Royer).

By the way, too: it is perfectly true that

f × g = f g + i
2
{f ,g}+ · · ·

convergent under favourable conditions envisageable here.
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Vast ∗-spaces

It is natural to introduce the multiplier spaces:

MR := {S ∈ S′ : f ×S ∈ S, ∀f ∈ S}; ML := {S ∈ S′ : S × f ∈ S};
as well as the ∗-algebra M :=MR ∩ML. These spaces of
distributions are ∗-algebras under × that coincide with
their strong biduals:

(M ′L)
′ =ML; (M ′R)

′ =MR;

moreover, among other nice properties:

M ′L,R ×M
′
L,R =M ′L,R.

They be regarded as inductive limits of continuous-index
families of Hilbert algebras.

In the eighties we saw how to use the properties of the
so-extended Moyal product to prove Schwartz’s crowning
kernel theorem quite in a simple way.
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José M. Gracia-Bondı́a Looking back to the Moyal revolution



Fourier–Kirillov–Moyal theory

Usually, X is an homogeneous G-space, and then H is a
representation space, say for a unirrep U . Then we ask
covariance from the quantizer:

Ω(g · x) =U (g)Ω(x)U†(g).

The harmonic analysis (Plancherel theory) of general Lie
groups is a desperately abstract branch of mathematics. It can
be made more concrete by identifying the coadjoint orbits
related to unirreps and defining the Fourier–Plancherel
transform by means of the scalar kernel:

E(x,g) = Tr
(
Ω(x)U (g)

)
In this way, most of the nicer properties of standard Fourier
theory are recovered.
Mind you! The matter is more complicated for non-unimodular

groups – as we learned from affine groups some time ago.
José M. Gracia-Bondı́a Looking back to the Moyal revolution



Group orbits with Fourier–Kirillov–Moyal kernels

The “Fourier–Kirillov–Moyal paradigm” (FKM) holds for
every orbit of any compact group.

For SU (2) (spin) the Moyal representation is a roaring
success, since it was introduced almost at the same time
that quantum optics & MRI practitioners abandoned the
quantum-mechanical description for more visual ones.

With suitable modifications, FKM works for some
non-unimodular groups with simple systems of coadjoint
orbits. There one must consider right and left kernels.

Nilpotent groups: done in all generality by Pedersen.

Discrete series of SL(2,R): existence proof by the
Unterbergers.

Groups with not-simply connected coadjoint orbits are
notoriously difficult.

José M. Gracia-Bondı́a Looking back to the Moyal revolution



Group orbits with Fourier–Kirillov–Moyal kernels

The “Fourier–Kirillov–Moyal paradigm” (FKM) holds for
every orbit of any compact group.

For SU (2) (spin) the Moyal representation is a roaring
success, since it was introduced almost at the same time
that quantum optics & MRI practitioners abandoned the
quantum-mechanical description for more visual ones.

With suitable modifications, FKM works for some
non-unimodular groups with simple systems of coadjoint
orbits. There one must consider right and left kernels.

Nilpotent groups: done in all generality by Pedersen.

Discrete series of SL(2,R): existence proof by the
Unterbergers.

Groups with not-simply connected coadjoint orbits are
notoriously difficult.
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Other FKM tales

Physically interesting are the coadjoint orbits of
semi-direct product groups, like the Poincaré groups. For
the orbits corresponding to massive particles of the
ordinary Poincaré group we have proved the existence of
Moyal (i.e., tracial) quantizers.

The Moyal representation of the relativistic particle case is
based on a hyperbolic reflection:

Mpξ := 2
(pξ)p
p2
− ξ,

where both p and ξ stand for 4-momentum, respectively in
phase space and as wave function coordinate. This melds
well with the spinor formulation, allowing for extensions to
higher spins.
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Coda

Nobody has succeeded yet to do the same for massless
particle orbits.

Upping the stakes, Lizzi, Várilly, Vitale and myself did look
last year at the coadjoint orbit picture for the so-called
unbounded helicity particles of Wigner – this works out
fine, yielding a curious duality with the magnetic
monopole. But that has not helped much in today’s
respect for now.

As mentioned, the span of related applications of this and
related circles of ideas nowadays is vast: non-formal
deformation theory , time-frequency analysis ,
non-commutative geometry. . .
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Talking about non-commutative geometry. . .

There is an “obvious” affinity of Moyal-like quantization
with non-commutative geometry. Over the years, this
connection has been made concrete. I will just mention
two instances.

Perhaps the mathematical creature with more (disputing)
fathers I know of is the “fuzzy sphere”. In fact I hold that
the fuzzy sphere was introduced avant la lettre by
Stratonovich (1956). This paper was the germ for our
ideas on the general Moyal representation for spin.

Alain Connes initially took with some scepticism the idea
that Moyal planes could be spectral triples – of a
non-compact sort. Teaming our efforts, we (the Marseilles’
group of Kastler’s disciples, Várilly and myself) were able
to show precisely that, now fifteen years ago.
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Physical Wigner functions I

In any physical theory, one should pay due attention to the
states. Long ago, Várilly and myself built up a machine that
fabricates (generally mixed) states (“Wigner functions”) being
positive both in the standard and in the Moyal sense (that is,
the corresponding trace-class operator is positive).

I long regarded results of this kind as of a formal nature, for
the good reason that physical quanta obey either Bose or

Fermi statistics.

It is not hard to prove that symmetry or anti-symmetry
conditions for a 2-body problem demand of the Wigner
function:

W (R,r;P ,p) =W (R,−r;P ,−p)

for R the extracule and r the intracule coordinates, in
chemists’ jargon.
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Physical Wigner functions II

To distinguish between the two cases, we may show that
W̃R,P (v,p) = ±W̃R,P (p,v), on using two momentum-like (or
equivalently position-like) variables.

Now, for a more realistic situation, consider spin Wigner
functions: a 1-body atomic Wigner function in matrix form
would be of the form(

W ↑1↑1′ (x;p) W ↑1↓1′ (x,p)
W ↓1↑1′ (x,p) W ↓1↓1′ (x,p)

)
;

and a 2-body atomic Wigner distribution:
W ↑1↑2↑

′
1↑
′
2(1,2) W ↑1↑2↑

′
1↓
′
2(1,2) W ↑1↑2↓

′
1↑
′
2(1,2) W ↑1↑2↓

′
1↓
′
2(1,2)

W ↑1↓2↑
′
1↑
′
2(1,2) W ↑1↓2↑

′
1↓
′
2(1,2) W ↑1↓2↓

′
1↑
′
2(1,2) W ↑1↓2↓

′
1↓
′
2(1,2)

W ↓1↑2↑
′
1↑
′
2(1,2) W ↓1↑2↑

′
1↓
′
2(1,2) W ↓1↑2↓

′
1↑
′
2(1,2) W ↓1↑2↓

′
1↓
′
2(1,2)

W ↓1↓2↑
′
1↑
′
2(1,2) W ↓1↓2↑

′
1↓
′
2(1,2) W ↓1↓2↓

′
1↑
′
2(1,2) W ↓1↑2↓

′
1↓
′
2(1,2)

 .
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Spin Wigner functions

Wigner himself criticized the redundancy in the last
formula, in one of his last papers. Now, since the 1-body
function has a scalar and a vector part, simply on the
basis of: (

[1]⊕ [3]
)⊗2

= 2[1]⊕ 3[3]⊕ [5];

we see that the Wigner function multiplet has only six
components, or strata under rotations, and under
exchange of v and p the correct signs are, going from
scalar to quadrupole, respectively: (+,−,−,−,+,+) – I omit
the details.

So there is still life in the old subject of Wigner functions,
nowadays being required by quantum chemistry
applications. . .
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