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Introduction
Noncommutative space(time) algebras are introduced and studied:

• To avoid UV divergences in QFT [Snyder 1947].

• As an arena to formulate QG, inducing ∆x & Lp predicted by
QG arguments [Mead 1966, Doplicher et al 1994-95].

• As an arena for unification of interactions [Connes-Lott,....]

• ...

Fuzzy spaces are particularly appealing: a FS is a sequence An∈N
of finite-dimensional algebras such that An

n→∞−→ A ≡algebra of
regular functions on an ordinary manifold.
First, seminal example: the Fuzzy Sphere (FS) of Madore [1991]:
An ' Mn(C), generated by coordinates x i (i = 1, 2, 3) fulfilling

[x i , x j ] =
2i√
n2−1

εijkxk , r2 := x ix i = 1, n ∈ N \ {1}; (1)

(1) are covariant under SO(3), but not under the whole O(3); in
particular not under parity x i 7→ −x i .
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In fact Li = x i
√
n2−1/2 make up the standard basis of so(3) in

the irrep (πl ,Vl) characterized by LiLi = l(l + 1), l = 2n+1.
Does the FS approximate the configuration space algebra of a
particle on S2? Problems: a) parity; b) Vl is irreducible, whereas

L2(S2) =
∞⊕
l=0

Vl

= C (S2) (2)

Here fuzzy approximations of QM on Sd (d = 2) solving a),b):

• Start with ordinary quantum particle in RD (D = d+1), under a
potential V (r) with a very sharp minimum on the sphere r = 1.

• By low enough energy-cutoff E ≤ E we ‘freeze’ radial excitations,
make only a finite-dimensional Hilbert subspace HE accessible, and
on it the x i noncommutative à la Snyder; the x i generate the
whole algebra of observables. O(D)-covariant by construction.

• Making E , k := V ′′(1)/4� 0 diverge with Λ∈N (while E0 =0),
we get a sequence AΛ of fuzzy approximations of ordinary QM on
Sd .
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on it the x i noncommutative à la Snyder; the x i generate the
whole algebra of observables. O(D)-covariant by construction.

• Making E , k := V ′′(1)/4� 0 diverge with Λ∈N (while E0 =0),
we get a sequence AΛ of fuzzy approximations of ordinary QM on
Sd .



Introduction General framework D=3:O (3)-covariant fuzzy sphere Outlook

In fact Li = x i
√
n2−1/2 make up the standard basis of so(3) in

the irrep (πl ,Vl) characterized by LiLi = l(l + 1), l = 2n+1.
Does the FS approximate the configuration space algebra of a
particle on S2? Problems: a) parity; b) Vl is irreducible, whereas

L2(S2) =
∞⊕
l=0

Vl = C (S2) (2)

Here fuzzy approximations of QM on Sd (d = 2) solving a),b):

• Start with ordinary quantum particle in RD (D = d+1), under a
potential V (r) with a very sharp minimum on the sphere r = 1.

• By low enough energy-cutoff E ≤ E we ‘freeze’ radial excitations,
make only a finite-dimensional Hilbert subspace HE accessible, and
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• On HE the square distance R2 from the origin is not identically
1, but a function of L2 which collapses to 1 in the Λ→∞ limit.

Remarks:

• Our construction is inspired by the Landau model: there
noncommuting x , y obtained projecting QM with a strong
uniform magnetic field B on the lowest energy subspace.

• Physically sound method, applicable to more general contexts.
Imposing a cutoff E on an existing theory:
• can yield an effective description of a system when our
measurements, or the interactions with the environment,
cannot bring its state to energies E > E ; or even
• may be a necessity if we believe E represents the threshold
for the onset of new physics not accountable by that theory.

• If H is invariant under some symmetry group, then the
projection PE on HE is invariant as well, and the projected
theory will inherit that symmetry.
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General framework

Consider a quantum particle in RD

configuration space with Hamiltonian

H = −1

2
∆ + V (r); (3)

we fix the minimum V0 = V (1) of the
the confining potential V (r) so that
the ground state has energy E0 = 0.
Choose an energy cutoff E fulfilling

V (r) ' V0 + 2k (r−1)2 (4)

if V (r) ≤ E ; so that V (r) has a har-

monic behavior for |r−1|≤
√

E−V0
2k .

Figure 1: Three-dimensional
plot of V (r)
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Then we restrict to HE ⊂ H ≡ L
2(RD) spanned by ψ with E ≤ E .

This entails replacing every observable A by A:

A 7→ A := PEAPE ,

where PE is the projection on HE . Because
of the behavior of V (r) as k → +∞, we ex-
pect that when both k , E diverge dim(HE )
diverges and we recover standard QM on the
sphere SD−1. The Laplacian in D dimen-
sions decomposes as follows

∆ = ∂2
r + (D − 1)

1

r
∂r −

1

r2
L2. (5)

where Lij := ix j∂i − ix i∂j are the angular momentum components
(in normalized units), and L2 = LijLij is the square angular
momentum, i.e. the Laplacian on the sphere SD−1.


Video.swf
Media File (application/x-shockwave-flash)
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H, Lij ,PE commute. As known, the eigenvalues of L2 are
j (j + D − 2); the Ansatz ψ = g(r)Y (ϕ, ...) (Y are eigenfunctions
of L2 and of the elements of a Cartan subalgebra of so(D); r , ϕ, ...
are polar coordinates) transforms the eigenvalue equation
Hψ = Eψ into this auxiliary ODE in the unknown g(r):[
−∂2

r −
D − 1

r
∂r +

j (j + D − 2)

r2
+ V (r)

]
g(r) = Eg(r); (6)

we must stick to solutions g leading to square-integrable ψ. To
obtain the lowest eigenvalues we don’t need to solve it exactly:
condition (4) allows us to approximate (6) with the eigenvalue
equation of a 1−dimensional harmonic oscillator, by Taylor
expanding V (r), 1/r , 1/r2 around r = 1.
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D=3: O (3)-covariant fuzzy sphere
Ansatz ψ = f (r)

r Ym
l (θ, ϕ). Ym

l are the spherical harmonics:

L2 Ym
l (θ, ϕ) = l(l + 1)Ym

l (θ, ϕ) , L3 Y
m
l (θ, ϕ) = mYm

l (θ, ϕ) ,

l ∈ N0, m ∈ Z, |m| ≤ l . Under assumption (4) the harmonic
oscillator approximation of (6) admits the (Hérmite) eigenfunctions

fn,l(r) = Nn,le
− (r−r̃l )

2√kl
2 Hn

(
(r − r̃l)

4
√
kl

)
, n = 0, 1, ....

with kl :=2k+3l(l+1), r̃l = 2k+4l(l+1)
2k+3l(l+1) . E0,0 =0⇒ V0 =−

√
2k+O(1);

then the energies associated to ψn,l ,m =
fn,l (r)

r Ym
l (θ,ϕ) are

En,l = 2n
√

2k + l(l + 1) + O
(

1/
√

2k
)

E0,l = l(l + 1) =: El are the eigenvalues of the Laplacian L2 on S2,
while En,l →∞ as k→∞ if n>0.
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We can eliminate the latter (con-
strain n = 0) imposing a cutoff
E ≤ E < 2

√
2k. And setting E ≡

Λ(Λ + 1) we obtain

E ≤ Λ(Λ + 1) ≡ E < 2
√

2k. (7)

i.e. we project the theory on the sub-
space HΛ⊂L2(R3) spanned by

ψm
l := ψ0,l ,m

' Nl

r
e−

(r−r̃l )
2√kl

2 Ym
l (θ, ϕ),

|m| ≤ l , l ≤ Λ.

(8) Figure 2: Two-dimensional
plot of V (r) including the
energy-cutoff

Clearly dim(HΛ)=(Λ+1)2. Let x0 := z , x± := x±iy√
2

. The action

of xa = r x
a

r (a = −, 0,+) on ψm
l factorizes into the one of r on

f0,l (r)
r and the one of xa

r on Ym
l .
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After projection we find

xaψm
l = clA

a,m
l ψm+a

l−1 + cl+1A
−a,m+a
l+1 ψm+a

l+1 ,

c0 = cΛ+1 = 0, cl =
√

1 + l2

k 1 ≤ l ≤ Λ
(9)

up to O
(

1/k
3
2

)
, and Aa,m

l ,Ba,m
l are the coefficients determined by

xa

r
Ym
l = Aa,m

l Ym+a
l−1 + A−a,m+a

l+1 Ym+a
l+1 .
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At leading order the Li , x
i , i ∈ {1, 2, 3}, fulfill

Λ∏
l=0

[
L

2 − l(l + 1)I
]

= 0,
l∏

m=−l

(
L3 −mI

)
P̃l = 0, (10)

L
†
i = Li ,

[
Li , Lj

]
= iεijhLh, x i† = x i , x iLi = 0, (11)

[Li , x
j ] = iεijhxh︸ ︷︷ ︸

Snyder−like

, [x i , x j ] = iεijh
(
−1

k
+ KP̃Λ

)
Lh,︸ ︷︷ ︸

Snyder−like

(12)

where K = 1
k +

1+Λ2

k
2Λ+1 , L

2
:= LiLi = LaL−a is L2 projected on HΛ,

and P̃l is the projection on its eigenspace with eigenvalue l(l + 1).
Moreover, the square distance from the origin is

R2 := x ix i = 1 +
L

2
+ 1

k
−
[

1 +
(Λ+1)2

k

]
Λ+1

2Λ + 1
P̃Λ. (13)

These relations are exact if we adopt (9) as definitions of xa.



Introduction General framework D=3:O (3)-covariant fuzzy sphere Outlook

To obtain a fuzzy space we can choose k as a function of Λ
fulfilling (7); one possible choice is k = Λ2(Λ + 1)2, and the
commutative limit will be Λ→ +∞.

Some remarks...

• [x , x ] = ... and [L, x ] = ... are Snyder-like: [x , x ] = −L/k (plus
term containing P̃Λ) and vanish as Λ→∞; ψm

l →δ(r−1)Ym
l .

• Hence (10-12) are covariant under the whole O(3), including
parity x i 7→−x i , Li 7→Li , contrary to Madore FS.

• R2 6= 1; its eigenvalues slightly grow with l (for each fixed Λ),
but collapse to 1 as Λ→∞.

• The ordered monomials in xi , Li make up a basis of the
(Λ+1)4-dim vector space AΛ :=End(HΛ)'M(Λ+1)2(C)

(P̃l can be expressed as polynomials in L
2
).

• Actually, x i generate the ∗-algebra AΛ (also the Li can be
expressed as a non-ordered polynomial in the x i ).
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Realization of the algebra of observables through Uso(4)

so(4) ' su(2)⊕ su(2) is spanned by
{
E 1
i ,E

2
i

}3

i=1
fulfilling

[E 1
i ,E

2
j ] = 0, [E 1

i ,E
1
j ] = iεijkE 1

k , [E 2
i ,E

2
j ] = iεijkE 2

k . (14)

Li := E 1
i + E 2

i , Xi := E 1
i − E 2

i make up alternative basis of so(4):

[Li , Lj ] = iεijkLk , [Li ,Xj ] = iεijkXk , [Xi ,Xj ] = iεijkLk . (15)

The Li close another su(2). Passing to generators labelled by
a ∈ {−, 0,+},

[L+, L−] = L0, [L0, L±] = ±L± = [X0,X±], [X+,X−] = L0, (16)

[L±,X∓] = ±X0, [L0,X±] = ±X± = [X0, L±], [La,Xa] = 0(17)

(no sum over a), where L2 = LiLi = LaL−a, X 2 = XiXi = XaX−a.
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In the tensor product representation πΛ := π Λ
2
⊗ π Λ

2
of

Uso(4) ' Usu(2)⊗Usu(2) on the Hilbert space VΛ := V Λ
2
⊗ V Λ

2
it

is C 1 := E 1
i E

1
i = Λ

2 ( Λ
2 + 1) = E 2

i E
2
i =: C 2, or equivalently

X · L = L · X = 0, X 2+L2 = Λ(Λ+2) (18)

(we have dropped the symbols πΛ). VΛ admits an orthonormal
basis consisting of common eigenvectors of L2 and L0:

L0 |l ,m〉 = m |l ,m〉 , L2 |l ,m〉 = l(l + 1) |l ,m〉 (19)

with 0 ≤ l ≤ Λ and |m| ≤ l . VΛ,HΛ have the same dimension
(Λ+1)2 and decomposition in irreps of the Li subalgebra; we
identify them setting ψm

l ≡ |l ,m〉. The action of X a on VΛ reads

X a |l ,m〉 = dlA
a,m
l |l − 1,m + a〉 + dl+1B

a,m
l |l + 1,m + a〉 (20)

dl :=
√

(Λ+1)2 − l2
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We can naturally realize La, x
a in π Λ [Usu(2)⊗ Usu(2)].

Define λ :=
√

4L2+1−1
2 ; then λ |l ,m〉 = l |l ,m〉. The Ansatz

La = La, xa = g(λ)X a g(λ), (21)

fulfills (9) and therefore (10-12) provided

g(l) =

√√√√√ ∏l−1
h=0(Λ+l−2h)∏l

h=0(Λ+l+1−2h)

[ l−1
2 ]∏

j=0

1 + (l−2j)2

k

1 + (l−1−2j)2

k

(22)

=

√√√√√ Γ
(

Λ+l
2 +1

)
Γ
(

Λ−l+1
2

)
Γ
(

Λ+1+l
2 +1

)
Γ
(

Λ−l
2 +1

) Γ
(

l
2 +1+ i

√
k

2

)
Γ
(

l
2 +1− i

√
k

2

)
√
k Γ
(
l+1
2 + i

√
k

2

)
Γ
(
l+1
2 −

i
√
k

2

)
The inverse of (21) is clearly X a = [g(λ)]−1 xa [g(λ)]−1.
We have thus explicitly constructed a *-algebra map

AΛ := End(HΛ) ' MN(C) ' πΛ[Uso(4)], N := (Λ+1)2. (23)
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As known, the group of ∗-automorphisms of MN(C) ' AΛ is
SU(N) and

b → gbg−1, b ∈ AΛ, g ∈ SU(N).

A special role is played by the subgroup SO(4) acting through the
representation πΛ, namely g = πΛ

[
e iα
]
, α ∈ so(4).

O(3) ⊂ SO(4) plays the role of isometry subgroup.

In particular, choosing α = αiLi (αi ∈ R) the automorphism
amounts to a SO(3) transf. (a rotation in 3-dimensional space).

An O(3) transformation with determinant −1 in the X 1X 2X 3

space is parity (Li ,X
i ) 7→ (Li ,−X i ), or equivalently E 1

i ↔ E 2
i (this

is the only automorphism of so(4), corresponding to the exchange
of the two nodes in the Dynkin diagram).
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Convergence to O(3)-equivariant quantum mechanics on S2 as Λ→∞
Define O(3)-equivariant embedding I : HΛ ↪→ L2(S2)≡Hs by
I (ψm

l ) := Ym
l ; below drop I and identify ψm

l = Ym
l .

PΛφ→ φ in the Hs -norm ‖ ‖: HΛ ‘invades’ Hs as Λ→∞.

I induces an embedding J :AΛ ↪→B [Hs ].
Li =Li on HΛ, and Liφ→ Liφ as Λ→∞, ∀φ ∈ D(Li )

Bounded (continuous) functions f on S2, acting as multiplication
operators f · : φ ∈ Hs 7→ f φ ∈ Hs , make up a subalgebra B(S2)
[resp. C (S2)] of B [Hs ]. Fuzzy analog of vector space B(S2):

CΛ :=

{
2Λ∑
l=0

l∑
m=−l

f ml Ŷm
l , f ml ∈ C

}
=

2Λ⊕
l=0

Vl ⊂ AΛ, (24)

where Ŷm
l := Ml

√
(l + m)!2l−m

(2l)!(l −m)!
Ll−m− (x+)l (25)

are the fuzzy analogs of Ym
l · ∈ B(S2).
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We first show x iφ→ (x i/r)φ.

Moreover, ∀f · ∈ B(S2) let f̂Λ :=
∑2Λ

l=0

∑
|m|≤l f

m
l Ŷm

l ∈ CΛ.

Proposition. Choose k(Λ) ≥ 23Λ+3ΛΛ+5(Λ+1). Then f̂Λ → f ·,
(̂fg)Λ → fg ·, f̂ΛĝΛ → fg · strongly as Λ→∞, ∀f ·, g · ∈ B(S2).
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Final remarks and conclusions

For d = 2 we have built a sequence (AΛ,HΛ) of finite-dim,
O(D)-covariant (D = d+1) approximations of QM of a spinless
particle on the sphere Sd ; R2 & 1 collapses to 1 as Λ→∞.

Achieved imposing E ≤ Λ(Λ+d−1) on QM of a particle in RD

subject to a sharp confining potential V (r) on the sphere r = 1.

AΛ are fuzzy approximations of the whole algebra of observables of
the particle on Sd (phase space algebra).

AΛ ' πΛ[Uso(D+1)], with a suitable irrep πΛ of Uso(D+1) on HΛ.

HΛ carries a reducible representation of the Uso(D) subalgebra
generated by the Lij : HΛ =

⊕
irreps fulfilling L2 ≤ Λ(Λ+d−1).

The same decomposition holds for the subspace CΛ ⊂ AΛ of
completely symmetrized polynomials in the x i .

As Λ→∞ these resp. become the decompositions (2) of L2(Sd)
and of C (Sd) acting on L2(Sd).



Introduction General framework D=3:O (3)-covariant fuzzy sphere Outlook

Comparison with literature

The fuzzy spheres of dimension d = 4 [Grosse, Klimcik, Presnajder
1996], d ≥ 3 [Ramgoolam 2001, Dolan, O’Connor 2003, ...], are
based on End(V ) where V carries a particular irrep of SO(d + 1);
R2 is central, can be set=1. Snyder-like commutation relations,
hence O(d + 1)-covariant.

In [Steinacker 2016-17] fuzzy 4-spheres S4
N through reducible repr.

of Uso(5) obtained decomposing irreps π of Uso(6) with suitable
highest weights (N, n1, n2); so End(V ) ' π[Uso(6)], in analogy
with our result. The elements X i of a basis of so(6) \ so(5) (as a
vector space) play the role of noncommuting cartesian coordinates.
Hence, the SO(5)-scalar R2 = X iX i is no longer central, but its
spectrum is still very close to 1 only if N � n1, n2;
if n1 = n2 = 0 then R2 ≡ 1 (⇒ irrep), and one recovers the fuzzy
4-sphere [Grosse, Klimcik, Presnajder 1996].

Here R2 ' 1 is guaranteed by adopting x i = g(L2)X ig(L2) rather
than X i as noncommutative cartesian coordinates, and R2 = x ix i .
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Bonus slide: Coherent states

It’s interesting to look for the states χ ∈ HΛ minimizing the
uncertainty on the localization. We suggest that we have to
minimize

∆R2
χ : =

〈
χ

∣∣∣∣∣
3∑

i=1

(
∆x i

)2

∣∣∣∣∣χ
〉

=

〈
χ

∣∣∣∣∣
3∑

i=1

x ix i

∣∣∣∣∣χ
〉
−

3∑
i=1

(〈
χ|x i |χ

〉)2
=

=
〈
χ
∣∣R2

∣∣χ〉− 3∑
i=1

(〈
χ|x i |χ

〉)2
,

(26)

where ‖χ‖ = 1. It’s easy to see that (26) is O(3)-covariant, and
we’ve proved that our coherent states are more “localized” than
the Perelomov coherent states of the Madore’s fuzzy sphere.
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