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Motivation

Virasoro algebra (=central extension of Witt algebra): very important
∞-dimensional Lie algebra, omnipresent in 2-dimensional conformal
field theory and String Theory; see Kac, Raina and Rozhkovskaya [7].

Low-dimensional cohomology: interpretation in terms of invariants,
outer derivations, extensions, deformations and obstructions, as well
as crossed modules ↔ their knowledge allows a better understanding
of the Lie algebra itself.

Algebraic cohomology (arbitrary maps) vs continuous cohomology
(continuous maps): valid for any base field K with char(K) = 0,
independent of any topology chosen, independent of any concrete
realization of the Lie algebra.
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Main Objectives

Aim: Compute the third algebraic cohomology with values in the
adjoint module of the Virasoro algebra.

Byproduct: third algebraic cohomology with values in the trivial
module of the Witt and the Virasoro algebra.

Known in the case of the adjoint module:

? First algebraic cohomology of the Witt and the Virasoro algebra; see
Ecker and Schlichenmaier [2].

? Second algebraic cohomology of the Witt algebra; see Schlichenmaier
[9, 8] and also Fialowski [4, 3].

? Second algebraic cohomology of the Virasoro algebra; see
Schlichenmaier [9].

? Third algebraic cohomology of the Witt algebra; see Ecker and
Schlichenmaier [2].
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The Witt algebra

Witt algebra W generated as vector space over a field K with
char(K) = 0 by the elements {en | n ∈ Z} satisfying the following Lie
structure:

[en, em] = (m − n)en+m, n,m ∈ Z

Z-graded Lie algebra: deg(en) := n

Decomposition of W: W =
⊕

n∈ZWn, with each Wn a 1-dimensional
homogeneous subspace generated by en

Internally graded: [e0, en] = nen = deg(en)en, i.e. en is eigenvector of
ade0 := [e0, ·] with eigenvalue n

Algebraic realization: Lie algebra of derivations of Laurent
polynomials K[Z−1,Z ]

Geometrical realization:
K = C, algebra of meromorphic vector fields on CP1 holomorphic
outside of 0 and ∞, with en = zn+1 d

dz

Lie algebra of polynomial vector fields on S1, with en = e inφ d
dφ

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 5 / 27



The Virasoro algebra

The Virasoro algebra V is the universal one-dimensional central
extension of the Witt algebra

Central extension described by short exact sequence:

0 −→ K i−→ V π−→W −→ 0 .

Exact sequence · · · fi−1→ Mi
fi→ Mi+1

fi+1→ . . . : ker fi = im fi−1.

As a vector space, V = K⊕W generated by ên := (0, en) and
t := (1, 0)

Lie structure equation:

[ên, êm] = (m − n)ên+m − 1
12 (n3 − n)δ−mn t,

[ên, t] = [t, t] = 0

deg(ên) := deg(en) = n and deg(t) = 0 ⇒ V is Z-graded
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The Lie algebra cohomology

Let L: Lie algebra; M: L-module and Cq(L,M): vector space of
q-multilinear alternating maps with values in M, called q-cochains
(q ∈ N)
Convention: C 0(L,M) := M
Coboundary operators δq defined by:

∀q ∈ N, δq : Cq(L,M)→ Cq+1(L,M) : ψ 7→ δqψ ,

(δqψ)(x1, . . . xq+1) : =
∑

1≤i<j≤q+1(−1)i+j+1 ψ([xi , xj ] , x1, . . . , x̂i , . . . , x̂j , . . . , xq+1)

+
∑q+1

i=1 (−1)i xi · ψ(x1, . . . , x̂i , . . . , xq+1) ,

with x1, . . . , xq+1 ∈ L
Adjoint module M = L, x ·m = [x ,m]; trivial module M = K,
x ·m = 0
δq+1 ◦ δq = 0 ∀ q ∈ N → complex of vector spaces:

{0} δ−1−→ M
δ0−→ C 1(L,M)

δ1−→ · · ·
δq−2−→ Cq−1(L,M)

δq−1−→ Cq(L,M)
δq+1−→ Cq+1(L,M)

δq+1−→ . . .

where δ−1 := 0
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The Chevalley-Eilenberg cohomology

q-cocycles : Zq(L,M) := ker δq

q-coboundaries : Bq(L,M) := im δq−1

qth cohomology group of L with values in M:

Hq(L,M) := Zq(L,M)/Bq(L,M)

Chevalley-Eilenberg cohomology:

H∗(L,M) :=
∞⊕
q=0

Hq(L,M)
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The degree of a homogeneous cochain

L graded Lie algebra, M a graded L-module, M internally graded
with respect to the same grading element as the Lie algebra L
Examples: adjoint module M=L; trivial module M=K with
K =

⊕
n∈ZKn, K0 = K and Kn = {0} for n 6= 0

A q-cochain ψ is homogeneous of degree d if ∃ a d ∈ Z s.t. for all
q-tuple x1, . . . , xq of homogeneous xi ∈ Ldeg(xi ), we have:

ψ(x1, . . . , xq) ∈ Mn with n =

q∑
i=1

deg(xi ) + d

; decomposition of cohomology:

Hq(L,M) =
⊕
d∈Z

Hq
(d)(L,M)

Result by Fuks [5]:

Hq
(d)(L,M) = {0} for d 6= 0 ,

Hq(L,M) = Hq
(0)(L,M)
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Main result

Main Theorem

The third algebraic cohomology of the Virasoro algebra V over a field K
with char(K) = 0 and values in the adjoint module is one-dimensional, i.e.

dim(H3(V,V)) = 1

Use intermediate results

H3(V,W) ∼= H3(W,W)

and
dim(H3(V,K))(= dim(H3(W,K))) = 1

Proof of H3(V,W) ∼= H3(W,W): uses Hochschild-Serre spectral
sequence (c.f. [1]).

Proof of dim(H3(V,K)) = 1: later.
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Proof of main theorem (I)

Short exact sequence 0 −→ K i−→ V π−→W −→ 0 of Lie algebras is
also a short exact sequence of V-modules.

In cohomology, we obtain long exact sequence:

· · · → H2(V,W)→ H3(V,K)→ H3(V,V)→ H3(V,W)→ . . . .

Second cohomology: H2(V,W) ∼= H2(W,W) and also

H2(W,W) = {0} hence H2(V,W) = 0 (c.f. [9])

Third cohomology: H3(V,W) ∼= H3(W,W) and also

H3(W,W) = {0} hence H3(V,W) = {0} (c.f. [2])
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Proof of main theorem (II)

The long exact sequence becomes a short exact sequence:

0→ H3(V,K)→ H3(V,V)→ 0 .

Recall 2nd intermediate result:

dim(H3(V,K)) = 1 (proof on next slide)

By exactness, we obtain the result of the main theorem:

dim(H3(V,V)) = 1 .
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (I)

Theorem

The third cohomology group of the Witt and the Virasoro algebra with
values in the trivial module K is one-dimensional, i.e.:

dim(H3(W,K)) = dim(H3(V,K)) = 1

First step : Find a cocycle of H3(V,K) that is not a coboundary.

Second step : There are no other cocycles up to equivalence.
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Cocycle condition and coboundary condition

The condition for a 3-cochain ψ to be a cocycle with values in the
trivial module is:

(δ3ψ)(x1, x2, x3, x4) =ψ ([x1, x2] , x3, x4)− ψ ([x1, x3] , x2, x4)

+ ψ ([x1, x4] , x2, x3) + ψ ([x2, x3] , x1, x4)

− ψ ([x2, x4] , x1, x3) + ψ ([x3, x4] , x1, x2) = 0 ,

where x1, x2, x3, x4 are elements of W or V.

The condition for a 3-cocycle ψ to be a coboundary with values in the
trivial module is:

ψ(x1, x2, x3) = (δ2φ)(x1, x2, x3)

⇔ ψ(x1, x2, x3) = φ ([x1, x2] , x3) + φ ([x2, x3] , x1) + φ ([x3, x1] , x2) ,

where φ is a 2-cochain with values in K and x1, x2, x3 are elements of
W or V.
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Inspiration from continuous cohomology (I)

Let t be the coordinate along S1. Elements of Vect(S1) : f (t) d
dt ,

with f real-valued smooth function on S1.

Continuous cohomology: dim(H3
c(Vect(S1),R)) = 1 (see Fuks and

Gelfand [6]) .

Generator given by Godbillon-Vey cocycle (c.f. [6]) :

G V :

(
f
d

dt
, g

d

dt
, h

d

dt

)
7→
∫
S1

det

 f g h
f ′ g ′ h′

f ′′ g ′′ h′′

 dt

with f , g , h ∈ C∞(S1). Prime = derivative w.r.t. t.
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Inspiration from continuous cohomology (II)

Geometrical realization of the Witt algebra: ẽn = ie int
d

dt
.

We obtain:

G V (ẽn, ẽm, ẽk) = −
∫
S1

det

 1 1 1
n m k
n2 m2 k2

 e i(n+m+k)tdt

= (n −m)(n − k)(m − k)

∫
S1

e i(n+m+k)tdt

Integral evaluates to zero if n + m + k 6= 0, otherwise it yields the
value 1.
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (II)

Trilinear map Ψ ∈ H3(W,K) :

Ψ :W ×W ×W → K

defined on basis elements ei as follows:

Ψ(ei , ej , ek) = (i − j)(j − k)(i − k)δi+j+k,0

Trivial extension to a map of H3(V,K) :

Ψ̂ : V × V × V → K ,

by setting Ψ̂(x1, x2, x3) = 0 whenever one of the elements x1, x2 or x3

is a multiple of the central element t.
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (III)

Proposition 1

The trilinear maps Ψ and Ψ̂ define non-trivial cocycle classes of H3(W,K)
and H3(V,K), respectively.

Proof.

Ψ and Ψ̂ are cocycles of H3(W,K) and H3(V,K) respectively: shown
by direct computation.

Ψ and Ψ̂ are not coboundaries: evaluate at e−1, e1, e0

→ Ψ(e−1, e1, e0) = 2 but (δ2Φ)(e−1, e1, e0) = 0 for all 2-cochains
Φ :W ×W → K, shown by direct computation. Similarly for Ψ̂.
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (IV)

Second step : There are no other non-trivial cocycles than Ψ resp.

Ψ̂, up to multiples and coboundaries.
(dimension of H3(W,K)) = dim(H3(V,K) is at most one)

Fuks [5]: We only need to consider degree zero cohomology. Ψ and

Ψ̂ are of degree zero.

Let ψ be an arbitrary degree zero 3-cocycle of V or W.

Set:

ψ′ = ψ − ψ(e−1, e1, e0)

2
Ψ̂ resp. ψ′ = ψ − ψ(e−1, e1, e0)

2
Ψ

Then ψ′(e−1, e1, e0) = 0 because

Ψ(e−1, e1, e0) = Ψ̂(e−1, e1, e0) = 2.
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (V)

Proposition 2

Let ψ be a 3-cocycle for V or W with ψ(e−1, e1, e0) = 0 .

Then ψ is a coboundary .

ψ′ fulfills ψ′(e−1, e1, e0) = 0 ⇒ ψ′ = 0 up to coboundaries:

ψ =
ψ(e−1, e1, e0)

2
Ψ̂ resp. ψ =

ψ(e−1, e1, e0)

2
Ψ

⇒ Then any 3-cocycle ψ of V or W is a multiple of Ψ̂ resp. Ψ, up to
coboundaries, if Proposition 2 is true
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (VI)

Proof of Proposition 2: elementary but tedious computations.

Proof in three steps:

Step 1 Fuks [5]: Reduce to degree zero cochains and cocycles.

Step 2 Perform cohomological change ψ → ψ − δ2φ (Lemma 1)

Step 3 Use fact that we are dealing with cocycles; i.e. use cocycle
conditions (Lemma 2).
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (VII)

Step 1

Cochains and cocycles can be defined entirely by a system of
coefficients in K.

Write

ψ(ei , ej , ek) := ψi ,j ,k and ψ(ei , ej , t) := ci ,j

with ψi ,j ,k , ci ,j ∈ K.

We have: ψi ,j ,k = 0 if i + j + k 6= 0 and ci ,j = 0 if i + j 6= 0

because we are considering degree zero cochains (c.f. [5])
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (VIII)

Step 2

Lemma 1

Every 3-cocycle ψ′ ∈ H3(V,K) satisfying ψ′(e1, e−1, e0) = 0 is
cohomologous to a 3-cocycle ψ ∈ H3(V,K) with coefficients
ci ,j , ψi ,j ,k ∈ K fulfilling:

ci ,j = δi ,−j

(
1

6
i (i − 1)(i + 1)c2,−2

)
and ψi ,j ,1 = 0 ∀ i , j ∈ Z

Similarly for W
Proof: elementary algebra but technical; use coboundary conditions
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Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (IX)

Step 3

Lemma 2

Let ψ ∈ H3(V,K) be a 3-cocycle such that:

ci ,j = δi ,−j

(
1

6
(i − 1)(i)(i + 1)c2,−2

)
and ψi ,j ,1 = 0 ∀ i , j ∈ Z .

Then:

ci ,j = 0 ∀ i , j ∈ Z and ψi ,j ,k = 0 ∀ i , j , k ∈ Z

Similarly for W
Proof: elementary algebra, but complicated; use cocycle conditions

⇒ Every 3-cocycle ψ satisfying ψ(e1, e−1, e0) = 0 is a coboundary
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Summary

dim(H3(V,V)) = 1H3(W,W) = {0} Long exact
sequence

H3(V,W) ∼= H3(W,W) dim(H3(V,K)) = 1

Hochschild-
Serre spectral

sequence

Proposition 1 Proposition 2

Ψ̂ is a cocycle

Ψ̂ is not a
coboundary

Lemma 1

Lemma 2
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Thank you for your attention!
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