On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Backgroun

Symplectic geometry 2-plectic

Homotopy moment map

The Lie 2-algebra

The Lie 2-algebra
of observables
Lie algebra

Lie 2-algebra moment map

Existence and

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

KU Leuven

September 26, 2018

Joint work with Marco Zambon

Outline

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Symplectic geometry 2-plectic geometry

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra moment map

Lie 2-algebra moment map

Motivation Existence and obstruction

- 1 Background
 - Symplectic geometry
 - 2-plectic geometry
- 2 Homotopy moment map
 - Lie 2-algebra
 - The Lie 2-algebra of observables
 - Lie algebra moment map
- 3 Lie 2-algebra moment map
 - Motivation
 - Existence and obstruction

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra moment map

Lie 2-algebra moment map Motivation ■ *M* a symplectic or n-plectic **connected** manifold.

g a Lie algebra acting on M effectively and via Hamiltonian vector fields:

$$\mathfrak{g} o \mathfrak{X}_{\operatorname{Ham}}(M)$$

 $x \mapsto v_x$

Symplectic geometry

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background
Symplectic
geometry
2-plectic
geometry

Homotopy
moment map
Lie 2-algebra
The Lie 2-algebra
of observables
Lie algebra
moment map

Lie 2-algebra moment map Motivation Let M be a manifold, and $\omega \in \Omega^2(M)$ a symplectic, i.e., closed and non-degenerate, form.

Definition

 $X \in \mathfrak{X}(M)$ is a **Hamiltonian vector field** corresponding to $f \in C^{\infty}(M)$, denoted by X_f , if $df = -i_X \omega$

Remark

 $C^{\infty}(M)$, equipped with the Poisson bracket, is a Lie algebra, called the algebra of **observables**

Symplectic geometry: moment map

On homotopy moment maps for Lie 2-algebras

Symplectic geo metry

Definition

A (co)moment map for g is a Lie algebra morphism

$$f:\mathfrak{g}\to C^\infty(M)$$

such that
$$v_x = X_{f(x)}$$
.

2-plectic geometry

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background
Symplectic
geometry
2-plectic
geometry

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra moment map

Lie 2-algebra moment map Motivation Existence and obstruction

Definition

Let M a manifold, and $\omega \in \Omega^3(M)$ such that

$$d\omega = 0$$

and

$$i_{\nu}\omega=0\iff \nu=0.$$

Then ω is an **2-plectic form** form, and M is a **2-plectic manifold**.

Definition

A 1-form $\alpha \in \Omega^1(M)$ is **Hamiltonian** if there exists $X_{\alpha} \in \mathfrak{X}(M)$ such that

$$d\alpha = -i_{X_{\alpha}}\omega$$
.

2-plectic geometry: examples

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background Symplectic geometry 2-plectic

geo metry

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra

Lie 2-algebra moment map Motivation Existence and An oriented 3-dimensional manifold M with volume form ω_{vol}

 $\blacksquare \wedge^2 T^*M$ with

$$\omega = -d\theta$$
,

where
$$\theta|_{(m,\alpha)}(v_1,v_2) = \alpha(\pi_*v_1,\pi_*v_2)$$

■ G compact semi-simple Lie group with

$$\omega = \langle \theta, [\theta, \theta] \rangle,$$

where $\langle \ , \ \rangle$ is an Ad-invariant inner product, and θ is the Maurer Cartan form.

Lie 2-algebra moment map

Motivation Existence and obstruction

Definition

A Lie 2-algebra is a graded vector space $V_1[1] \oplus V_0$ together with maps

$$\begin{split} \delta: V_{1}[1] &\to V_{0} \\ [\;,\;]: \wedge^{2} V_{0} &\to V_{0} \\ : V_{1}[1] \wedge V_{0} &\to V_{1}[1] \\ [\;,\;,\;]: \wedge^{3} V_{0} &\to V_{1}[1] \end{split}$$

satisfying the "higher Jacobi identities".

The Lie 2-algebra of observables

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background Symplectic geometry 2-plectic

Homotopy moment map Lie 2-algebra The Lie 2-algebra

of observables Lie algebra

Lie 2-algebra moment map

Motivation Existence and obstruction Theorem (Baez, Hoffnung, Rogers 2008)

Let (M, ω) be a 2-plectic manifold. There is a Lie 2-algebra structure on the graded vector space $C^{\infty}(M)[1] \oplus \Omega^1_{Ham}(M)$, where for $f \in C^{\infty}(M)$, $\alpha_i \in \Omega^1_{Ham}(M)$

$$\delta f = df$$

$$[\alpha_1, \alpha_2] = \omega(v_{\alpha_1}, v_{\alpha_2}, \cdot)$$

$$[\alpha_1, \alpha_2, \alpha_3] = -\omega(v_{\alpha_1}, v_{\alpha_2}, v_{\alpha_3}).$$

We will denote this Lie 2-algebra by $L_{\infty}(M,\omega)$.

Lie algebra moment map

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Symplect geometry 2-plectic geometry

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables

Lie algebra moment map

Lie 2-algebra moment ma ^{Motivation}

Motivation Existence and obstruction Let (M, ω) be a 2-plectic manifold.

Definition (Callies, Fregier, Rogers, Zambon)

A (homotopy) moment map for ${\mathfrak g}$ is an $L_\infty ext{-algebra morphism}$

$$f:\mathfrak{g}\to L_\infty(M,\omega)$$

such that
$$df_1(x) = -i_{\nu_x}\omega \ \forall x \in \mathfrak{g}.$$

Lie algebra moment map: existence and obstruction

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background Symplectic geometry 2-plectic

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables

Lie algebra moment map

Lie 2-algebra moment ma Motivation Let $p \in M$, and $\widetilde{\omega}_p \in \wedge^3 \mathfrak{g}^*$ a cocycle in the Chevalley-Eilenberg complex of \mathfrak{g} .

Proposition (Callies, Fregier, Rogers, Zambon 2016)

If there exists a moment map for \mathfrak{g} , then $[\widetilde{\omega}_p]_{\mathfrak{g}}=0\in H^3(\mathfrak{g})$. Conversely, if $[\widetilde{\omega}_p]_{\mathfrak{g}}=0$ and $H^1(M)=0$, then there exists a moment map for the action of \mathfrak{g} on M.

Lie 2-algebra moment map

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background Symplectic

Symplectic geometry 2-plectic geometry

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra

Lie 2-algebra moment map

> Motivation Existence and obstruction

Let $(\mathfrak{h}[1] \oplus \mathfrak{g}, \delta, [\;,\;], [\;,\;])$ be a Lie 2-algebra, (M, ω) a 2-plectic manifold.

Definition

A moment map for $\mathfrak{h}[1]\oplus\mathfrak{g}$ is an L_{∞} -morphism

$$f:\mathfrak{h}[1]\oplus\mathfrak{g}\to L_\infty(M,\omega)$$

such that
$$df_1(x) = -i_{\nu_x}\omega \ \forall x \in \mathfrak{g}.$$

A closer look at the Lie 2-algebra

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background
Symplectic
geometry
2-plectic

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra moment map

Lie 2-algebra moment map

Motivation Existence and obstruction We will consider the case where $\delta\equiv 0$, i.e, the Lie 2-algebra $(\mathfrak{h}[1]\oplus\mathfrak{g},[\;,\;],[\;,\;])$. This data is equivalent to to:

- Lie algebra g
- A representation $\rho: \mathfrak{g} \otimes \mathfrak{h} \to \mathfrak{h}$ given by

$$\rho(x)h = [x, h]$$

for $x \in \mathfrak{g}, h \in \mathfrak{h}$

■ A 3-cocycle $c: \wedge^3 \mathfrak{g} \to \mathfrak{h}$ for the Lie algebra cohomology of \mathfrak{g} with values in \mathfrak{h} given by

$$c(x, y, z) = [x, y, z].$$

Why Lie 2-algebra moment maps?

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Background Symplectic geometry 2-plectic

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra

Lie 2-algebra moment map

Motivation

Existence and

- No need to restrict ourselves to a Lie algebra, since we already have an L_{∞} -morphism.
- There always exists a Lie 2-algebra moment map for a special Lie 2-algebra $\mathbb{R}[1] \oplus \mathfrak{g}$, provided $H^1(M) = 0$.

Existence and obstruction

On homotopy moment maps for Lie 2-algebras

Leyli Mammadov

Background
Symplectic
geometry
2-plectic
geometry

Homotopy
moment map
Lie 2-algebra
The Lie 2-algebra
of observables
Lie algebra

Lie 2-algebra moment maj

Motivation Existence and obstruction **Question:** For which Lie 2-algebras does there exist a moment map?

Proposition

If there exists a moment map for $\mathfrak{h}[1] \oplus \mathfrak{g}$, then $[\widetilde{\omega}_p]_E = 0 \in H^3(E, d_E)$.

Conversely, if $[\widetilde{\omega}_p]_E = 0$ and $H^1(M) = 0$, then there exists a moment map for $\mathfrak{h}[1] \oplus \mathfrak{g}$.

Remark

This proposition encodes a constructive way to obtain moment maps for $\mathfrak{h}[1] \oplus \mathfrak{g}$.

Moreover, when $H^1(M) = 0$, any moment map for $\mathfrak{h}[1] \oplus \mathfrak{g}$ is co-homologous to one obtained as in the proposition.

Existence and obstruction

On homotopy moment maps for Lie 2-algebras

Leyli Mammadov

Background
Symplectic
geometry
2-plectic
geometry

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra

Lie 2-algebra moment map

Motivation Existence and obstruction **Question:** For which Lie 2-algebras does there exist a moment map?

Proposition

Assume $[\widetilde{\omega}_p]_{\mathfrak{g}} \neq 0$. If $\mathfrak{h}[1] \oplus \mathfrak{g}$ admits a moment map, then $\mathfrak{h}[1] \oplus \mathfrak{g}$ has a quotient which is L_{∞} -quasi-isomorphic to $\mathbb{R}[1] \oplus_{-\widetilde{\omega}_p} \mathfrak{g}$ by a morphism that is identity on \mathfrak{g} . The converse holds if $H^1(M) = 0$.

Remark

We assume $[\widetilde{\omega}_p]_{\mathfrak{g}} \neq 0$, because otherwise there exists a \mathfrak{g} -moment map. Note that, in that case, there exists a moment map for any $\mathfrak{h}[1] \oplus \mathfrak{g}$, since $proj: \mathfrak{h}[1] \oplus \mathfrak{g} \to \mathfrak{g}$ is an L_{∞} -morphism.

Existence and obstruction

On homotopy moment maps for Lie 2-algebras

Define

$$\Psi: \mathfrak{h}^*_{red} \to H^3(\mathfrak{g})$$
$$\xi \mapsto [\xi \circ c_{red}]_{\mathfrak{g}}$$

Let $\mathfrak{h}_{red} := \mathfrak{h}/[\mathfrak{g},\mathfrak{h}]$, and $c_{red} = pr \circ c$, where $pr : \mathfrak{h} \to \mathfrak{h}_{red}$.

Proposition

 $[\widetilde{\omega}_p]_E = 0 \iff [\widetilde{\omega}_p]_{\mathfrak{g}}$ lies in the image of Ψ .

Corollary

Assume $[\widetilde{\omega}_p]_{\mathfrak{g}} \neq 0$.

- If $[c_{red}]_{\mathfrak{g}}=0$, then there is no moment map for $\mathfrak{h}[1]\oplus\mathfrak{g}$
- If $[c_{red}]_{\mathfrak{g}} \neq 0$, $H^3(\mathfrak{g}) \cong \mathbb{R}$, $H^1(M) = 0$, then there exists a moment map for $\mathfrak{h}[1] \oplus \mathfrak{g}$.

Leyli Mammadova

2-plectic geometry Homotopy moment ma

moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra moment map

Lie 2-algebra moment map

Existence and obstruction

References

On homotopy moment maps for Lie 2-algebras

Leyli Mammadova

Symplectic geometry 2-plectic

Homotopy moment map Lie 2-algebra The Lie 2-algebra of observables Lie algebra moment map

Lie 2-algebra moment map

Existence and

- John C Baez and Alissa S Crans, Higher-dimensional algebra VI: Lie 2-algebras, Theory Appl. Categ 12 (2004), no. 15, 492–528.
- John C Baez, Alexander E Hoffnung, and Christopher L Rogers, *Categorified symplectic geometry and the classical string*, Communications in Mathematical Physics **293** (2010), no. 3, 701.
- Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764, Springer-Verlag, Berlin, 2001.
- Martin Callies, Yael Fregier, Christopher L. Rogers, and Marco Zambon, Homotopy moment maps, Advances in Mathematics 303 (2016), 954–1043.
- Yaël Frégier, Camille Laurent-Gengoux, and Marco Zambon, A cohomological framework for homotopy moment maps, J. Geom. Phys. 97 (2015), 119–132.
- Leonid Ryvkin and Tilmann Wurzbacher, Existence and unicity of co-moments in multisymplectic geometry, Differential Geom. Appl. 41 (2015), 1–11.

Thank you!