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Natural / invariant differential
operators



Conformally invariant operators — Killing fields

(M, g) (pseudo-)Riemannian manifold gives conformal class [g]
equivalence relation g ~ g = Q2g for some positive Q € C>(M)

Lxg=)g

equivalent to
trace-free part of V(,Xp) =0



Conformally invariant operators — Yamabe operator

n—2
RECEY

acting on conformal densities of weight w =1 — 7

Y=A

f s F=QF



Solution spaces

For open U C M:

dim{f e C*(U): Yf =0} =

2)(n+1
dim{X € X(U) : trace-free part of V(,X,) = 0} < %



Solution spaces

For open U C M:

dim{f e C>(U) : Yf =0} = o0

2 1
dim{X € X(U) : trace-free part of V(,X,) = 0} < %

maximum attained on SO(1, n+ 1)/P where solutions arise from the
action of SO(1,n+ 1)



Conformally invariant operators — nonexistence

A3+ lot.

There is no sixth order conformally invariant differental operator on M*
whose principal part is third power of the Laplace operator. [Graham1992]



Invariant differential operators

= For a homogeneous space G/P, P-representation V the associated

homogeneous bundle is V =G xpV — G/P
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Invariant differential operators

= For a homogeneous space G/P, P-representation V the associated
homogeneous bundle is V =G xpV — G/P

= jnvariant differential operators between sections of two such bundles
VY and W must respect natural induced actions of G

D:T(G/P,V) = (G/P,W)
DOZ}E} = ﬁ\(;vOD

= (linear) differential operator D of order k is given by a linear map
from the k-th jet prolongation

D: T°(G/P,T*V) = I=(G/P, W)

= From invariance we equivalently have homomorphism J¥V — W,
where JXV denotes the algebraic jet prolongation of V.
= Passing to dual maps and taking the limit k — co we get

Homy, (W*, £(g)®yu(p) V") ~ Homg (U(g) Qg W*, 4(9)®s(p) V")



BGG resolutions and Lie algebra (co)homology

G semisimple, P parabolic, p =& py, A € h* g-integral, dominant
~> Ly finite-dimensional g-representation

BGG resolution
s P MwA) s @ M(wN) = M) Ly

weWwbi wewtl
M(w - X) = (g)@gsi(p)Fuw-x



BGG resolutions and Lie algebra (co)homology

G semisimple, P parabolic, p =& py, A € h* g-integral, dominant
~> Ly finite-dimensional g-representation
BGG resolution
o P MwN) o D M(w-A) = M(A) = Ly
weWwbi wewtl

M(w - X) = (g)@gsi(p)Fuw-x

Kostant’s theorem on nilpotent cohomology
p+7L)\ @ IFw)\ — p+7L)\)

weWwbi



Nilpotent cohomology / BGG resolution for SU(2, 2)

(2, -3, 0)
(0,0,0) —» (1, -2,1) T, —4,1) — (0, -4, 0)
U0, -3,2)



The BGG graph for SU(4,4)




Cartan geometries aka curved setting

Cartan geometry modeled on (G, P) is a principal P-bundle G — M with a
choice of Cartan connection w € Q(G, g).

This generalizes G — G/P to a principal P-bundle G — M and the
Maurer-Cartan form wyc = g~ 'dg to w.

define the curvature of w by

1
R =dw + E[w,w]

(Maurer—Cartan equation: R“M¢ = Q)
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Cartan geometries — Examples

Riemannian manifolds:
(M, g)
~+ (SO(n+1),S0(n))
Conformal structures:
(M, [g]) where g1, g> € [g] if there exists ¢ > 0 such that g3 = pg»

~ (SO(p+1,q9+1),S0(p, q) x RP*9)

Projective structures:
(M, [V]) where V1, V; € [V] if they have the same unparametrized
geodesics

~> (SL(n + 1), SL(n) x R")

contact structures, Grassmanian geometries, CR-geometries, Cartan’s
(2,3,5) distributions, . ..
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Cartan geometries — tractor bundles and connections

(G — M,w)

For any P-module V we get associated bundle V = G xp V over M and
out of w we get a connection V¢ and twisted deRham operator

(d“s)(u) = Z e N (VEs)(u)+ Os(u) — Zei A€ Ak(er, e)as(u)

i i<j
where O is a Lie algebra cohomology differential.

The twisted deRham sequence:

0— Q°(M,V) = QYM,V) = Q*(M,V) — ...
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Kostant’s theorem on nilpotent cohomology

Start with finite-dimensional g-representation L.

1. Find invariant positive definite inner product on cochain spaces.
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Kostant’s theorem on nilpotent cohomology

Start with finite-dimensional g-representation L.

1. Find invariant positive definite inner product on cochain spaces.
2. Define § as adjoint of 0 — one gets Lie algebra homology differential.
3. Define 0 = 99+ d 0 that acts on the direct sum C of cochain spaces.

Hodge decomposition:

C=im0Pkerd®imd
kerd = im 6 @ ker ker9 = im0 @ ker .

L-invariant projector onto ker [J
Id-07t0
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Kostant 4+ Cartan = Calderbank—Diemer

Replace L-invariant projector onto ker[]
Id-07'0=1d-00§4+69)=1d-00*6+0 160

with something P-invariant...
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Kostant 4+ Cartan = Calderbank—Diemer

Replace L-invariant projector onto ker[]
Id-07'0=1d-00§4+69)=1d-00*6+0 160

with something P-invariant...

VsV
d ~s dv

O~ 0O, ==68d*+d*§

O '~ Q=0

Nn* =1d-Qd* — d“Q
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M“ calculus

The operator MY : QX(M, V) — QK(M, V) has the following properties.
1. The operator 1} vanishes on im § and maps into ker J:
Fod=0 & doly=0.

2. The operator 1% induces identity on the homology bundles

7-lk(me%/):
Y =1d mod imé.

3. The commutator of d“ and “ equals to the commutator of @ and R
dolly —N{ 10d*=QoR—-RoQ,

where R is the curvature operator defined by R(s) = (d* o d“)(s).
4. For k =0 and in the flat case, the operator is actually a projection:

(MN¥¥ =M%+ Qo Ro Q.

NyoO,=—-QoRod & [O,0ly=—-05oRoQ.
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Calderbank—Diemer construction of BGG sequences [CD01]

N =1d —Qd* — d“ @
in the flat case:
= differential projection “ onto a subspace of ker § complementary to
imd
= [1¥ is a chain map between twisted deRham complexes

dv: Q*V — Q*1V which is homotopic to the identity, the
chain-homotopy being the operator Q : Q°V — Q°*~1V
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Calderbank—Diemer construction of BGG sequences [CD01]

MN“ =1d —Qd“ — d“Q
in the flat case:

= differential projection “ onto a subspace of ker § complementary to
imd

= [1¥ is a chain map between twisted deRham complexes
dv: Q*V — Q*1V which is homotopic to the identity, the
chain-homotopy being the operator Q : Q°V — Q°*~1V

The BGG operator D) : C%°(M, Hi(p+,V)) = C(M, Hyr1(p+,V)) is
then defined as

Dy :=projo My ; od“ oM} orep,

where proj is the algebraic projection on homology and rep is a choice of
representative in the homology class.
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Properties of BGG operators

Dy1 Dy = proj o I'Ij‘(’+2 o Rol¥ orep

In the flat case

1. ker Dy ~ ker V¥

2. the sequence
D' : COO(MaHO(p-‘MV)) — COO(MaHO+1(p+aV))

is locally exact and computes the cohomology of M with values in
locally constant sheaf of parallel sections of V
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Properties of BGG operators

Dy1 Dy = proj o I'Ij‘(’+2 o Rol¥ orep

In the flat case

1. ker Dy ~ ker V¥

2. the sequence
D' : COO(MaHO(p-‘MV)) — COO(MaHO+1(p+aV))

is locally exact and computes the cohomology of M with values in
locally constant sheaf of parallel sections of V

In general, one can modify V* with curvature terms so that
ker Dy ~ ker V¥
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Leibniz rule

For a (g, P)-map u: Wy ® W, — V we can use wedge product to define
bi-differential operators

o1 C®(M, Hi(W1)) ® C® (M, Hi(W2)) — C®(M, Hyps (V)

by
aof =projoly, o AN orepa, My orep f)

and then

Diyi(ao B) = (Dra) o B+ (—1)ka o D)5+
i1 ((QRNZa) ANE B+ (—1)* M A (QRMY ) — RQ(Mya A TIF B))

In the flat case the product ¢ descends to cup product in cohomology.
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Multidifferential operations and relations

For any (g, P)-equivariant linear map V; ® V, ® V3 — W one can define
multidifferential map

Co (M, Hy (V1)) xC™ (M, Hy(V2)) xC* (M, Hm(V3)) = C°(M, Hics 11m—1(W))

which is related to Massey products in the flat case and which is
compatible with Leibniz rule.

One can continue in this manner and obtain (curved) Ay or L., algebra
realized by multi-differential operators.
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Thank you for attention!



Inverse of [,

Since 0 is hidden in d* we get 00, = O(Id —N) where

N=Id-07"'0, =) €V

i

is a degree 1 map with respect to a naturally defined grading and so we
can get the inverse by Neumann series

Ol =@-no =) _Nyo
k>0

provided

1. the P-module V has lowest / highest weight and
2. the inverse of [J exists (e.g. by Kostant's algebraic Hodge theory)
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