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Atoms of amplitudes

New building blocks:
Three point amplitudes

✤ On-shell, gauge invariant functions
✤ Fully fixed by Lorentz symmetry
✤ We want to build scattering amplitudes from them
✤ We will glue them together and introduce new objects 

called on-shell diagrams



✤ Two options

Three point kinematics

pµ = �µ
aȧ�a

e�ȧ

Spinor helicity variables

h12i = ✏ab�1a�2b�1 ⇠ �2 ⇠ �3

e�1 ⇠ e�2 ⇠ e�3
Two solutions for

3pt kinematics
p21 = p22 = p23 = (p1 + p2 + p3) = 0

[12] = ✏ȧḃ
e�1ȧ

e�2ḃ



✤ Two solutions for amplitudes

Three point amplitudes

h1 h2

h3

h1
h2

h3

h1 + h2 + h3  0

h1 + h2 + h3 � 0

A3 = h12i�h1�h2+h3h23i+h1�h2�h3h31i�h1+h2�h3

A3 = [12]+h1+h2�h3 [23]�h1+h2+h3 [31]+h1�h2+h3



✤ To simplify our task we choose a specific spin-1 case 

✤ Maximal supersymmetry: no need to specify helicities

✤ We consider SU(N)             SYM theory

Special case of interest

N = 4

�1 ⇠ �2 ⇠ �3

A(1)
3 =

[23]3

[31][12]
A(2)

3 =
h23i3

h31ih12i

e�1 ⇠ e�2 ⇠ e�3



Amplitudes in N=4 SYM

✤             superfield

✤ Superamplitudes: 

� = G++ ⌘̃A�A+
1

2
⌘̃A⌘̃BSAB +

1

6
✏ABCD⌘̃A⌘̃B ⌘̃C�

D
+

1

24
✏ABCD⌘̃A⌘̃B ⌘̃C ⌘̃DG�

An =
n�2X

k=2

An,k

⌘̃4kComponent amplitudes with power 

N = 4

Contain amplitudes with k negative and (n-k) 
positive helicity gluons but also many others



✤ In              SYM: super-amplitudes

Three point amplitudes

A(1)
3 =

�4(p1 + p2 + p3)�4([23]e⌘1 + [31]e⌘2 + [12]e⌘3)
[12][23][31]

A(2)
3 =

�4(p1 + p2 + p3)�8(�1e⌘1 + �2e⌘2 + �3e⌘3)
h12ih23ih31i

Easy book-keeping

N = 4

e⌘k fermonic variable in the superfield



✤ At tree-level

✤ At loop level we get multiple traces too
Consider the planar limit
Single trace dominates, cyclic ordering
Planar              SYM theory is special

Planar limit

Mn =
X

�

Tr(T a1T a2 . . . T an)⇥A(123 . . . n)

N ! 1

Supersymmetry irrelevant: massless QCD and N=4 SYM identical

N = 4



On-shell diagrams



✤ Let us build a diagram

P

Gluing three point amplitudes



✤ Let us build a diagram

P

Gluing three point amplitudes

= A(2)
3 (14P )⇥A(1)

3 (P23)

Multiply two three
point amplitudes

=
�4(p1 + p4 + P )�8(�1e⌘1 + �4e⌘4 + �P e⌘P )

h14ih4P ihP1i ⇥�4(p2 + p3 � P )�4(e⌘P [23] + e⌘2[3P ] + e⌘3[P2]

[23][3P ][P2]

also �P ⇠ �2 ⇠ �3 e�1 ⇠ e�4 ⇠ e�Pand



✤ Let us build a diagram

P

Gluing three point amplitudes

= A(2)
3 (14P )⇥A(1)

3 (P23)

Multiply two three
point amplitudes

=
�4(p1 + p2 + p3 + p4)�8(�1e⌘1 + �2e⌘2 + �3e⌘3 + �4e⌘4)

h12ih23ih34ih41i ⇥ �((p2 + p3)
2)

Four point tree level amplitude on factorization channel 

= A4(1234)⇥ �((p2 + p3)
2)



✤ Different from Feynman diagrams

On-shell vs off-shell

on-shell off-shell
gauge-invariant
factorization of amplitude

not gauge-invariant
contributes to the amplitude



P

✤ Let us build a diagram

Gluing three point amplitudes

P1

P2

P3

P4



P

✤ Let us build a diagram

Gluing three point amplitudes

Multiply four three
point amplitudes

P1

P2

P3

P4

= A(1)
3 (1P1P4)⇥A(2)

3 (2P2P1)⇥A(1)
3 (3P3P2)⇥A(2)

3 (4P4P3)



P

✤ Let us build a diagram

Gluing three point amplitudes

Multiply four three
point amplitudes

P1

P2

P3

P4

= A(1)
3 (1P1P4)⇥A(2)

3 (2P2P1)⇥A(1)
3 (3P3P2)⇥A(2)

3 (4P4P3)

= A4(1234)



On-shell vs off-shell

✤ Comparison to similarly looking Feynman diagram

1 2

34

one-loop diagram
loop momentum with 4 
unspecified parameters

product of four 3pt amplitudes
also a cut of 1-loop amplitude: 
4 propagators on-shell
no unspecified parameters left



✤ Draw arbitrary graph with three point vertices

On-shell diagrams

Products of three point 
amplitudes

P > 4L

P = 4L

P < 4L

( Extra delta functions
Function of external data only
Unfixed parameters (forms)



✤ Draw arbitrary graph with three point vertices

✤ Parametrized by 

On-shell diagrams with                 are cuts of the amplitude

On-shell diagrams

P  4L

n, k k = 2B +W � P



On-shell diagrams in general

✤ Not limited just to planar N=4 SYM theory

✤ Planar, non-planar, susy, non-susy, gluons, gravitons, 
electrons, quarks…..

14. On-Shell Diagrams with N < 4 Supersymmetries

On-shell diagrams can be defined for any theory with fundamental trivalent vertices,

and in particular for gauge theories with any number, N , of supersymmetries. There

is obviously a rich structure to be unearthed here; in this short section we will

content ourselves with setting-up some of the basic formalism and highlighting the

central new mathematical object that makes an appearance—reflecting the physics

of ultraviolet singularities which are present in theories with less supersymmetry.

Let us begin our discussion by focusing on non-supersymmetric theories, those

of “N = 0”. It is useful to represent the helicities involved in each basic 3-particle

vertex by giving each of the edges an orientation:

and (14.1)

We can then glue these vertices together to build-up more complex on-shell diagrams

as before—leading to, for example:

(14.2)

In such decorated on-shell diagrams, the arrows are useful because they automatically

encode the helicities of the internal particles involved. In general, we consider the

particles as Grassmann coherent states labeled by e⌘I for I = 1, . . . ,N . In theories

with N < 4 supersymmetry, we have “+” and “�” multiplets, which include gluons

of helicity ±1 as their top components, respectively; thus, on-shell diagrams must be

labeled in exactly the same way for any N < 4.

The Grassmannian formalism is just as powerful in integrating over the phase

space of the internal particles regardless of the amount of supersymmetry. However,

when N < 4, the diagrams really are fundamentally oriented, whereas for N = 4

such an orientation merely encodes a convenient translation of the on-shell diagram

into a particular gauge-fixed matrix-representative C 2 G(k, n). If the k incoming

“source” indices are from a set A and the (n k) outgoing “sink” indices are from a,

we find exactly the same linear relation between the external kinematical data:Y

A

�2
�e�A � cAa

e�a

�Y

A

�N
�
e⌘A � cAae⌘a

�Y

a

�2
�
�a + cAa�A

�
, (14.3)

– 101 –

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,

k = 2nB + nW 0 � nI = 2nB + (n+ q)� nI = 3nB + 2 + q � nI , (2.5)

from which we see that for k = 2, 3nB = nI q. But 3nB � nI on general grounds,

and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

⇢
(1 2 4)

(2 3 4)

� 8
<

:

(1 2 3)

(1 3 4)

(1 3 5)

9
=

; (2.6)

8
>>><

>>>:

(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)

9
>>>=

>>>;

8
>>>>>>>>><

>>>>>>>>>:

(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)

9
>>>>>>>>>=

>>>>>>>>>;

(2.7)

Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.

– 5 –



✤ Stay in planar N=4 SYM theory

On-shell diagrams

Question: Can we build amplitude from on-shell diagrams?



Recursion relations



✤ Consider following diagram

BCFW shift

n1

One more loop
Three more on-shell conditions

Adding one parameterP

e�P ⇠ e�1 �P ⇠ �n

P = z�n
e�1



BCFW shift

✤ Consider following diagram
One more loop

Three more on-shell conditions

Adding one parameter
z�1

e�n

New formula: K1(z) =
dz

z
K0(z)

1 n



BCFW shift

✤ Consider following diagram
One more loop

Three more on-shell conditions

Adding one parameter
z�1

e�n

New formula: K1(z) =
dz

z
K0(z)

1 n

What is this?



✤ Consider following diagram

BCFW shift

z�1
e�n

�n ! �n + z�1

1 n

�1
e�1 �n

e�n

(�n + z�1)e�n

Effectively a shift

�1(e�1 � ze�n) e�1 ! e�1 � ze�n



BCFW shift

✤ Consider following diagram
One more loop

Three more on-shell conditions

Adding one parameter
z�1

e�n

New formula: K1(z) =
dz

z
K0(z)

Old on-shell diagram
with shift

�n ! �n + z�1

1 n

e�1 ! e�1 � ze�n



Cauchy formula

✤ Suppose the blob is the amplitude

✤ Cauchy formula

= An(z)

Shifted amplitude �n ! �n + z�1

@An(z) = 0

Take the residue on z = zk $ Erase an edge in the diagram

An

1 n

e�1 ! e�1 � ze�n



✤ Suppose the blob is the amplitude

Cauchy formula

An
I

dz

z
An(z) = 0@ = 0

1 n



✤ Suppose the blob is the amplitude

Cauchy formula

An
I

dz

z
An(z) = 0@ = 0

pole at z = 0

1 n



✤ Suppose the blob is the amplitude

Cauchy formula

An
I

dz

z
An(z) = 0@ = 0

pole at z = zk

come from P 2(zk) = 0

1 n



✤ Recursion relations for amplitude

✤ Tree-level amplitude = sum of on-shell diagrams

=

BCFW recursion relations

+
X

L,R
0



✤ Four point: only one factorization channel

✤ Five point amplitude

Simple examples

BCFW bridge
on 3,4

Bridge 5,1 on 3pt 
and 4pt amplitudes



✤ For k=3 we get three diagrams

+

Six point example

+=

X

L,R



✤ For k=3 we get three diagrams

✤ Particular representation depends on the BCFW shift

+

Six point example

+=

X

L,R



Loop recursion relations

✤ Recursion relations for    -loop integrand

+
X

L,R

=

`



Loop recursion relations

✤ Recursion relations for    -loop integrand

✤ Loop orders:

✤ New loop momentum 

+
X

L,R

=

(`� 1) `1, `2
`1 + `2 = `

`

`(L) = `(L)
0 + z�1

e�n

(`(L)
0 )2 = 0



✤ It is given by one diagram

✤ 4 complex parameters -> impose reality condition

✤ 5-loop on-shell diagram = 1-loop off-shell box

`0

Four point one loop amplitude

z�1
e�4

` = `0 + z�1
e�4



✤ Tree-level recursion: diagrams with              contribute

✤ Loop level: free parameters left

Dimensionality of diagrams

rational functions of external kinematics
no delta functions, no free parameters

P = 4L

components of loop momenta
P = 16free = 4L� P
L = 5
free = 4



Identity moves

✤ On-shell diagrams satisfy identity moves that do not 
change the expression 

✤ Anywhere in the graph

square movemerge-expand



✤ Example:

✤ There must be more invariant way how to talk about 
these diagrams

Identity moves

merge-expand
1 2

3

45

6

square move

+ rotate



✤ Example:

✤ There must be more invariant way how to talk about 
these diagrams: indeed there is…. next lecture

Identity moves

merge-expand
1 2

3

45

6

square move

+ rotate



Thank you for attention!


