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✤ Face variables

✤ Perfect orientation

Positive Grassmannian

Thus, the final relations involving the e�’s is encoded by the matrix C ⌘
✓
1 0 c1 3 c1 4
0 1 c2 3 c2 4

◆
.

Notice that only certain combinations of edge-weights appear in the equations.

This happens for a very simple—and by now familiar—reason. Think of the GL(1)-

redundancy of each vertex as a gauge-group, with the variable of a directed edge

charged as a “bi-fundamental” of the GL(1)⇥GL(1) of the vertices it connects.

Since the configuration C must be invariant under these “gauge groups”, only gauge-

invariant combinations of the edge variables can appear. And just as we saw in the

previous subsection, these combinations are those familiar from lattice gauge theory

and can be viewed as encoding the flux though each closed loop in the graph—that

is, each of its faces. Fixing the orientation of each face to be clockwise, the flux

through it is given by the product of ↵e (↵�1
e ) for each aligned (anti-aligned) edge

along its boundary. For future convenience, we define the face variables fi to be

minus this product.

Applying this to the example above, we find:

, with

f1=

↵�1
1 ↵�1

5 ↵2

f4=

↵4 ↵8 ↵1

f0=

↵5 ↵6 ↵7 ↵
�1
8

f2=

↵�1
2 ↵�1

6 ↵�1
3

f3=

↵3 ↵
�1
7 ↵�1

4

The boundary-measurements cAa can then be expressed in terms of the faces by

cAa = �
X

�2{A a}

Y

f2b�

(�f) , (4.61)

where b� is the ‘clockwise’ closure of �. (If there are any closed, directed loops, the

geometric series of faces enclosed should be summed.) The faces of course over-count

the degrees of freedom by one, and this is reflected by the fact that
Q

i(�fi) = 1.

c1 3 = f0 f3 f4 c1 4 = f0 f4
� f4

c2 3 = f0 f1 f3 f4 c2 4 = f0 f1 f4
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with the property
Y

j

fj = �1Perfect orientation

✤ Back to on-shell diagrams

✤ Not unique, always exists at least one

✤ Two (k) incoming, two (n-k) outgoing
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◆
.
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Perfect orientation

White vertex: one in, two out
Black vertex: two in, one outcab = �

X

�

Y

j

(�fj)

Elements of            matrix(k ⇥ n)
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Surprising connection



Connection

C =

✓
1 0 f0f3f4 f4(1� f0)
0 1 �f0f1f3f4 �f0f1f4

◆
R = Mtree

1 Mtree
2 Mtree

3 Mtree
4



Connection

C =

✓
1 0 f0f3f4 f4(1� f0)
0 1 �f0f1f3f4 �f0f1f4

◆
R = Mtree

1 Mtree
2 Mtree

3 Mtree
4

R =

Z
df0
f0

df1
f1

df2
f2

df3
f3

�(C · Z) Z = (�, e�, e⌘)



✤ Simple motivation: linearize momentum conservation

✤ We want to write it as two linear factors

 

Momentum conservation

�
⇣
Cab

e�b

⌘
� (Dab�b)

�(P ) = �

 
X

a

�a
e�a

!

�(C · Z) = �(C · e�)�(C? · �)�(C · e⌘)

and get the condition: Dab = C?
ab



✤ 2-planes for     and      in n-dimensions 

✤ Momentum conservation

Geometry of delta function

� e�

f(tC) = tk⇥nf(C). (4.13)

In the coordinate chart where we gauge-fix k of the columns to the identity as above,

then ⌦ = dk⇥(n�k)ca,b/f(C). Said more invariantly, we have

⌦ = hC1 · · ·Ck(dC1)
(n�k)i · · · hC1 · · ·Ck(dCk)

(n�k)i 1

f(C)
, (4.14)

where C↵ is a row-vector of C and, e.g.,

hC1 · · ·Ck(dC1)
(n�k)i ⌘ ✏a1a2...anc1,a1 · · · ck,akdc1,ak+1

^ · · · ^ dc1,an . (4.15)

4.2 Grassmannian Description of Kinematical Data: the 2-Planes � and �̃

In a moment, we will establish a very direct connection between on-shell diagrams

and the Grassmannian; but let us first pause to point out an even more basic way in

which the Grassmannian makes an appearance in scattering amplitudes: in the very

way we encode external kinematical data. We normally think of this data as simply

being specified by n 2-component spinors �↵
a and e�↵̇

a ; but of course we may also think

of this data as given by a pair of (2⇥n)-matrices—which we denote collectively by �

and e�. For example, the �’s are naturally associated with the (2⇥n)-matrix,

� ⌘
✓
�1
1 �1

2 · · · �1
n

�2
1 �2

2 · · · �2
n

◆
, �

�1 �2 · · · �n

�
. (4.16)

Instead of focusing on the columns of the matrix �, let us think about it as two

row-vectors. Each of these is a vector in an n-dimensional space. Under Lorentz

transformations, these two vectors change, but since Lorentz transformations act on

the �’s by SL(2)-transformations on their ↵ indices, the two new vectors will simply

be a linear combination of the original ones. Therefore, while the vectors themselves

change, the plane that is spanned by them is invariant under Lorentz transformations.

Quite beautifully then, the Lorentz-invariant information encoded by the �’s is really

just this 2-plane in n dimensions—an element of G(2, n) as realized in [14]. The same

is obviously true for the e�’s. Of course, the Lorentz group is only the SL(2) part of

GL(2) and on-shell forms do transform under “global” little group transformations

which correspond to the GL(1) subgroup of GL(2).

In terms of spinor helicity variables, momentum conservation is simply,
X

a

�↵
a
e�↵̇
a = 0, (4.17)

which has the geometric interpretation that the plane � is orthogonal to the plane
e�, [14]:

(4.18)
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same for
e�

f(tC) = tk⇥nf(C). (4.13)
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Two planes are orthogonal

�(
X

k

pk) = �(� · e�)

in the n-dimensional 
space



✤ Introduce an auxiliary k-plane       in n-dimensions

✤ This forces     and     to be orthogonal

Geometry of delta function

C

the Grassmannian G(k, n) represented by some matrix C which encodes the relations

satisfied among the e�’s and e⌘’s via the �-functions,
�k⇥4

�
C ·e⌘

�
�k⇥2

�
C ·e�

�
. (4.37)

Following the same logic, but exchanging each plane B and W for their orthogonal

complements, gives us the complementary set of relations involving the �’s. Not

surprisingly, these are simply given by the �-functions,
�2⇥(n�k)

�
�·C?�. (4.38)

Geometrically, the ordinary �-functions constrain the matrix C to be orthogonal to

e� and to contain �:

(4.39)

Putting everything together, each on-shell diagram is associated with a di↵erential-

form obtained by integration over,
Y

internal
edges e

⇣ 1

vol(GL(1)e)

⌘Y

w

d⌦w

Y

b

d⌦b �k⇥4
�
C ·e⌘

�
�k⇥2

�
C ·e�

�
�2⇥(n�k)

�
�·C?�. (4.40)

Notice that while freely using the �-functions to fix each internal �I and e�I , we

have not modded-out by the GL(1)-redundancies acting on these momenta (which

explains the appearance of the 1/vol(GL(1)) factors in (4.40)). It is natural to refer

to the net number of auxiliary variables—after modding-out by all these GL(1)-

redundancies—as the dimension of the space of configurations C2G(k, n). As each

vertex carries two auxiliary degrees of freedom, and each GL(1) from the internal

lines can be used to remove one of them, the ‘dimension’ associated with an on-shell

graph is simply:
dim(C) = 2nV � nI . (4.41)

We should mention that this can be counted in a more direct way from the graph

as follows. Because each on-shell graph is trivalent, we have 3nV = 2nI+n so that

dim(C) = 2nV nI = nI nV +n; and restricting our attention to planar graphs, Eu-

ler’s formula tells us that (nF n) nI+nV = 1 (where nF is the number of faces of

the graph including the n faces of the boundary). Putting these two facts together

shows that:
dim(C) = nF � 1. (4.42)

We will soon see that this is not an accident: there is a natural way in which the

degrees of freedom associated with a graph are encoded by its faces.

So far, we’ve described in general terms how to compute the di↵erential-form

associated with a given on-shell graph. In the next subsection, we will describe how

this can be done systematically using only two very simple, elementary operations;

and in section 4.5, we’ll show how these two operations can be e�ciently automated

to construct an explicit representative of the plane C expressed in terms of variables

associated with either a graph’s edges or faces.
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C is orthogonal to e�
�(C · e�)

C is contains   
=      orthogonal to 

�
� C?

�(C? · �)

� e�

�(� · e�)



Logarithmic form

✤ Delta functions

R =

Z
df1
f1

df2
f2

. . .
dfm
fm

�(C · Z)

Solves for some/all
parameters fj

Then use

�(C · Z) ⌘ �(C · e�)⇥ �(C? · �)⇥ �(C · e⌘)

�(� · e�)
�

✓
f1 �

h12i
h13i

◆
For example

Z
df

f
�(f � f0) =

1

f0



Logarithmic form

✤ Delta functions

R =

Z
df1
f1

df2
f2

. . .
dfm
fm

�(C · Z)

�(C · Z) ⌘ �(C · e�)⇥ �(C? · �)⇥ �(C · e⌘)

Polynomial in fermonic e⌘Depending on the dimensionality 
We solve for all   
We solve for all       and in addition delta functions for  
Not enough delta functions to solve for all      - some left unspecified 

fj
fj

fj
�, e�



Derivation: starting with 3pt

�(1)(C · Z) = �1⇥2(C · e�)�2⇥2(� · C?)�1⇥4(C · e⌘)

�(2)(C · Z) = �2⇥2(C · e�)�2⇥1(� · C?)�2⇥4(C · e⌘)

C =
�
1 z1 z2

�

A(1)
3 =

Z
dz1 dz2
z1z2

�(1)(C · Z)

A(2)
3 =

Z
dz1 dz2
z1z2

�(2)(C · Z)

C =

✓
1 0 z1
0 1 z2

◆



✤ Construct big positive matrix from small ones

✤ Arbitrary graph: positive matrix

Amalgamation procedure

✓
⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤

◆

The first instance of this phenomenon is extremely simple and trivial. Consider

an analog of the “factorization channel” diagram (2.22), but connecting two black

vertices. Because these vertices require that all the e�’s be parallel, it makes no

physical di↵erence how they are connected. And so, on-shell diagrams related by,

(2.28)

represent the same on-shell form. Thus, we can collapse and re-expand any chain

of connected black vertices in anyway we like; the same is obviously true for white

vertices. Because of this, for some purposes it may be useful to define composite black

and white vertices with any number of legs. By grouping black and white vertices

together in this way, on-shell diagrams can always be made bipartite—with (internal)

edges only connecting white with black vertices. We will, however, preferentially

draw trivalent diagrams because of the fundamental role played by the three-particle

amplitudes.

There is also a more interesting equivalence between on-shell diagrams that will

play an important role in our story. We can see this already in the BCFW represen-

tation of the four-particle amplitude given above, (2.20). The picture is obviously not

cyclically invariant—as a rotation would exchange its black and white vertices. But

the four-particle amplitude of course is cyclically invariant; and so there is another

generator of equivalences among on-shell diagrams, the “square move”, [80]:

(2.29)

The merger and square moves can be used to show the physical equivalence of

many seemingly di↵erent on-shell diagrams. For instance, the following two diagrams

generate physically equivalent on-shell forms:

(2.30)
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0

@
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤
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A

0
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⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
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⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

1

CCCCCCCCCCCCA

Poincaréinvarianceinthesameway,butariseonlyintheorieswithhigher-dimension

operatorslikeF
3
orR

3
.Ingeneral,Poincaréinvariancefixesthekinematicalde-

pendenceofthethree-particleamplitudeinvolvingmasslessparticleswitharbitrary

helicitiestobe,[69]:

A3(h1,h2,h3)/
⇢
[12]

h1+h2�h3
[23]

h2+h3�h1
[31]

h3+h1�h2P
ha>0;

h12i
h3�h1�h2

h23i
h1�h2�h3

h31i
h2�h3�h1P

ha<0.
(2.10)

Asmentionedabove,inmaximallysupersymmetrictheoriesallhelicitystates

areunifiedinasinglesuper-multiplet,andsothereisnoneedtodistinguishamong

theparticularhelicitiesofparticlesinvolved;andso,wemayconsiderthesimpler,

cyclically-invariantamplitudes:

and(2.11)

Thefirstincludesamongitscomponentsthe(�,+,+)amplitudeof(2.7),whilethe

latterincludesthe(+,�,�)amplitude.Thesesuper-amplitudesaregivenby,

A
(1)
3=

�
1⇥4�

[23]e⌘1+[31]e⌘2+[12]e⌘3
�

[12][23][31]
�
2⇥2�

�1e�1+�2e�2+�3e�3

�
;

A
(2)
3=

�
2⇥4�

�1e⌘1+�2e⌘2+�3e⌘3
�

h12ih23ih31i
�
2⇥2�

�1e�1+�2e�2+�3e�3

�
.

(2.12)

(Althoughnotessentialforourpresentconsiderations,itmaybeofsomeinter-

estthattheseobjectscanbemadefullypermutationinvariantbyincludingalsoa

prefactorf
c1,c2,c3

dependingonthe‘colors’caoftheparticlesinvolved(where‘color’

issimplyalabeldenotingthepossibledistinguishablestatesinthetheory).General

considerationsofquantummechanicsandlocality(seee.g.[69])requirethatanysuch

prefactormustbefullyantisymmetricandsatisfyaJacobiidentity—implyingthat

colorlabelscombinetoformtheadjointrepresentationofaLiealgebra.Themost

physicallyinterestingcaseiswhenthisisthealgebraofU(N);inthiscase,Ncanbe

viewedasaparameterofthetheory,andscatteringamplitudescanbeexpandedin

powersof1/Ntoallordersofperturbationtheory,[70].Inthispaper,wewillmostly

concernourselveswiththeleading-termsin1/N—theplanarsectorofthetheory.)
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Poincaré invariance in the same way, but arise only in theories with higher-dimension

operators like F 3 or R3. In general, Poincaré invariance fixes the kinematical de-

pendence of the three-particle amplitude involving massless particles with arbitrary

helicities to be, [69]:

A3(h1, h2, h3) /
⇢
[12]h1+h2�h3 [23]h2+h3�h1 [31]h3+h1�h2

P
ha > 0;

h12ih3�h1�h2h23ih1�h2�h3h31ih2�h3�h1
P

ha < 0.
(2.10)

As mentioned above, in maximally supersymmetric theories all helicity states

are unified in a single super-multiplet, and so there is no need to distinguish among

the particular helicities of particles involved; and so, we may consider the simpler,

cyclically-invariant amplitudes:

and (2.11)

The first includes among its components the (�,+,+) amplitude of (2.7), while the

latter includes the (+,�,�) amplitude. These super-amplitudes are given by,

A(1)
3 =

�1⇥4
�
[2 3]e⌘1 + [3 1]e⌘2 + [1 2]e⌘3

�

[1 2][2 3][3 1]
�2⇥2

�
�1
e�1 + �2

e�2 + �3
e�3

�
;

A(2)
3 =

�2⇥4
�
�1e⌘1 + �2e⌘2 + �3e⌘3

�

h1 2ih2 3ih3 1i �2⇥2
�
�1
e�1 + �2

e�2 + �3
e�3

�
.

(2.12)

(Although not essential for our present considerations, it may be of some inter-

est that these objects can be made fully permutation invariant by including also a

prefactor f c1,c2,c3 depending on the ‘colors’ ca of the particles involved (where ‘color’

is simply a label denoting the possible distinguishable states in the theory). General

considerations of quantum mechanics and locality (see e.g. [69]) require that any such

prefactor must be fully antisymmetric and satisfy a Jacobi identity—implying that

color labels combine to form the adjoint representation of a Lie algebra. The most

physically interesting case is when this is the algebra of U(N); in this case, N can be

viewed as a parameter of the theory, and scattering amplitudes can be expanded in

powers of 1/N to all orders of perturbation theory, [70]. In this paper, we will mostly

concern ourselves with the leading-terms in 1/N—the planar sector of the theory.)
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◆ Gluing preserves
positivity of minors



New procedure

✤ Write the amplitude as a sum of on-shell diagrams 
using recursion relations

✤ For each on-shell diagram construct the C-matrix 
using the boundary measurement

✤ Write logarithmic form which calculates the diagram



Definition of the theory

✤ Why is this for N=4 SYM? What about other theories?

✤ Diagrams and connection to Grassmannian is general

✤ Specific for theory: differential form

 

N=4 SYM: ⌦ =
d↵1

↵1

d↵2

↵2
. . .

d↵n

↵n
�(C · Z)



Definition of the theory

✤ Why is this for N=4 SYM? What about other theories?

✤ Diagrams and connection to Grassmannian is general

✤ Specific for theory: differential form

✤ In a sense           defines a theory (as Lagrangian does)

General QFT: ⌦ = F (↵) �(C · Z)

F (↵)



Exploring space of theories

✤ One step at a time away from N=4 SYM

✤ Case 1: planar N<4 SYM (including QCD)

14. On-Shell Diagrams with N < 4 Supersymmetries

On-shell diagrams can be defined for any theory with fundamental trivalent vertices,

and in particular for gauge theories with any number, N , of supersymmetries. There

is obviously a rich structure to be unearthed here; in this short section we will

content ourselves with setting-up some of the basic formalism and highlighting the

central new mathematical object that makes an appearance—reflecting the physics

of ultraviolet singularities which are present in theories with less supersymmetry.

Let us begin our discussion by focusing on non-supersymmetric theories, those

of “N = 0”. It is useful to represent the helicities involved in each basic 3-particle

vertex by giving each of the edges an orientation:

and (14.1)

We can then glue these vertices together to build-up more complex on-shell diagrams

as before—leading to, for example:

(14.2)

In such decorated on-shell diagrams, the arrows are useful because they automatically

encode the helicities of the internal particles involved. In general, we consider the

particles as Grassmann coherent states labeled by e⌘I for I = 1, . . . ,N . In theories

with N < 4 supersymmetry, we have “+” and “�” multiplets, which include gluons

of helicity ±1 as their top components, respectively; thus, on-shell diagrams must be

labeled in exactly the same way for any N < 4.

The Grassmannian formalism is just as powerful in integrating over the phase

space of the internal particles regardless of the amount of supersymmetry. However,

when N < 4, the diagrams really are fundamentally oriented, whereas for N = 4

such an orientation merely encodes a convenient translation of the on-shell diagram

into a particular gauge-fixed matrix-representative C 2 G(k, n). If the k incoming

“source” indices are from a set A and the (n k) outgoing “sink” indices are from a,

we find exactly the same linear relation between the external kinematical data:Y

A

�2
�e�A � cAa

e�a

�Y

A

�N
�
e⌘A � cAae⌘a

�Y

a

�2
�
�a + cAa�A

�
, (14.3)
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⌦ =
d↵1

↵1

d↵2

↵2
. . .

d↵n

↵n
· J (↵)�(C · Z)



✤ Case 2: Non-planar N=4 SYM

✤ Case 3: N=8 Supergravity

Exploring space of theories

Let us now show that n= nW 0 , which implies that there are no black-to-black

internal edges. Let us say the number of white multi-vertices is n+q; we want to

show that q=0. From the definition of k,

k = 2nB + nW 0 � nI = 2nB + (n+ q)� nI = 3nB + 2 + q � nI , (2.5)

from which we see that for k = 2, 3nB = nI q. But 3nB � nI on general grounds,

and so we must have that q=0, and hence 3nB=nI . Because q=0, there is one leg

connected to each white multi-vertex (nW 0 =n); and because 3nB=nI , there can be

no black-to-black internal edges. Thus every black vertex connects to precisely three

external legs via white multi-vertices, as we wanted to prove.

Therefore, any MHV (k = 2) on-shell diagram corresponding to an ordinary

function of the external data (n�=0) with kinematical support will involve precisely

(n 2) black vertices, each of which is attached to exactly three external legs via

white vertices. Thus, we can label any such diagram by a set T consisting of triplets

⌧ 2T of leg labels for each of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

⇢
(1 2 4)

(2 3 4)

� 8
<

:

(1 2 3)

(1 3 4)

(1 3 5)

9
=

; (2.6)

8
>>><

>>>:

(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)

9
>>>=

>>>;

8
>>>>>>>>><

>>>>>>>>>:

(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)

9
>>>>>>>>>=

>>>>>>>>>;

(2.7)

Notice that because there is no preferred way to order the external legs of a non-

planar diagram, there is no preferred way to order the triples. And so while we

have chosen a particular ordering for each triple in the examples above, these choices

should be viewed as completely arbitrary.

– 5 –

⌦ =
d↵1

↵1

d↵2

↵2
. . .

d↵n

↵n
�(C · Z)

same form as planar

less is known on mathematical side

⌦ =
d↵1

↵3
1

d↵2

↵3
2

. . .
d↵m

↵3
m

Y

v

�v · �(C · Z)

Both have natural 
extensions to lower SUSY



Back to planar N=4 SYM theory

✤ Each on-shell diagram has a nice geometric 
interpretation 

✤ To get the amplitude we use the recursion relations = 
consequence of the factorization of tree-level amplitudes 

✤ From geometric point of view: why this particular sum?

✤ Goal: to find the geometric formulation for the full 
amplitude



Inside of the triangle



✤ Let us consider three points in a projective plane

Inside of the triangle

Z1

Z2

Z3

Zj ⇠ tZj

We can 
also fix 

Zj =

0

@
⇤
⇤
⇤

1

A

Zj =

0

@
1
aj
bj

1

A



Inside of the triangle

✤ Point inside the triangle

✤ Point inside the triangle
Z1

Z2

Z3
Y

Zj ⇠ tZj

We can 
also fix 

Y = c1Z1 + c2Z2 + c3Z3 c1, c2, c3 > 0

Projective: one of      can be fixed to 1cj

Zj =

0

@
⇤
⇤
⇤

1

A

Zj =

0

@
1
aj
bj

1

A



Inside of the triangle

✤ Point inside the triangle

Z1

Z2

Z3
Y

On the boundary
c3 = 0

Y = c1Z1 + c2Z2 + c3Z3



Inside of the triangle

✤ Point inside the triangle

Z1

Z2

Z3
Y

On the boundary
Y = c1Z1 + c2Z2 + c3Z3

c1 = 0



Inside of the triangle

✤ Point inside the triangle

Z1

Z2

Z3
Y

On the boundary
Y = c1Z1 + c2Z2 + c3Z3

c2 = 0



Inside of the triangle

✤ Point inside the triangle

Z1

Z2

Z3
Y

On the boundary
Y = c1Z1 + c2Z2 + c3Z3

c2 = c3 = 0



Logarithmic form

✤ Point inside the triangle

✤ Form with logarithmic singularities on boundaries
Z1

Z2

Z3
Y

Y = Z1 + c2Z2 + c3Z3

⌦ =
dc2
c2

dc3
c3



Logarithmic form

✤ Point inside the triangle

✤ Form with logarithmic singularities on boundaries
Z1

Z2

Z3
Y

Y = Z1 + c2Z2 + c3Z3

⌦ =
dc2
c2

dc3
c3

c3 = 0

! dc2
c2



Logarithmic form

✤ Point inside the triangle

✤ Form with logarithmic singularities on boundaries
Z1

Z2

Z3
Y

Y = Z1 + c2Z2 + c3Z3

⌦ =
dc2
c2

dc3
c3

! dc3
c3

c2 = 0



Logarithmic form

✤ Point inside the triangle

✤ Form with logarithmic singularities on boundaries
Z1

Z2

Z3
Y

Y = Z1 + c2Z2 + c3Z3

⌦ =
dc2
c2

dc3
c3

! dc3
c3

c2 = c3 = 0

! 1



Logarithmic form

✤ Point inside the triangle

✤ Form with logarithmic singularities on boundaries

✤ Other boundaries can correspond to 

Z1

Z2

Z3
Y

Y = Z1 + c2Z2 + c3Z3

⌦ =
dc2
c2

dc3
c3

! dc3
c3

c2 = c3 = 0

! 1

c2, c3 ! 1



Logarithmic form

✤ Form with logarithmic singularities on boundaries

✤ Solve for            from 

⌦ =
dc2
c2

dc3
c3

Y = Z1 + c2Z2 + c3Z3c2, c3

c2 =
hY 13i
hY 23i

hX1X2X3i = ✏abcX
a
1X

b
2X

c
3

c3 =
hY 12i
hY 23i

dc2 dc3 =
hY d2Y ih123i2

hY 23i3

d2Y = dc2 dc3 Z2Z3



Logarithmic form

✤ Form with logarithmic singularities on boundaries

✤ Solve for            from 

⌦ =
dc2
c2

dc3
c3

Y = Z1 + c2Z2 + c3Z3c2, c3

hX1X2X3i = ✏abcX
a
1X

b
2X

c
3

d2Y = dc2 dc3 Z2Z3

⌦ =
hY d2Y ih123i2

hY 12ihY 23ihY 31i
Projective in all

variables



Polygon



Point inside the polygon

✤ Consider a point inside a polygon in projective plane

✤ Convex polygon: condition on points 

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = c1Z1 + c2Z2 + . . . cnZn

cj > 0

interior of the polygon

Zi

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A
������

⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

������
> 0

All main minors positive



✤ Consider a point inside a polygon in projective plane

Point inside the polygon

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = C · Z

Space of all points
inside convex polygon

Y = c1Z1 + c2Z2 + . . . cnZn

C =
�
c1 c2 c3 . . . cn

�
2 G+(1, n)

More formally:

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A 2 M+(3, n)



✤ Form with logarithmic singularities on boundaries

Logarithmic form

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = c1Z1 + c2Z2 + . . . cnZn

First guess

⌦ =
dc1
c1

dc2
c2

. . .
dcn
cn



✤ Form with logarithmic singularities on boundaries

Logarithmic form

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = c1Z1 + c2Z2 + . . . cnZn

First guess

⌦ =
dc1
c1

dc2
c2

. . .
dcn
cn

Space of all Y is only two-dimensional
Two-form with n poles

⌦ ⇠ dc1 dc2 N(c1, c2)

D(c1, c2)



✤ Easiest way how to write the form is to triangulate

Logarithmic form

Z1

Z2

Z3
Z4

Z5

Z6

Y



✤ Easiest way how to write the form is to triangulate

Logarithmic form

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = Z1 + c2Z2 + c3Z3

⌦1 =
dc2
c2

dc3
c3

Y = Z1 + c3Z3 + c4Z4

Y = Z1 + c4Z4 + c5Z5

Y = Z1 + c5Z5 + c6Z6

⌦2 =
dc3
c3

dc4
c4

⌦3 =
dc4
c4

dc5
c5

⌦4 =
dc5
c5

dc6
c6

How to sum them?
c2, c3 � 0

c5, c6 � 0

c3, c4 � 0

c4, c5 � 0



✤ Easiest way how to write the form is to triangulate

Logarithmic form

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = Z1 + c2Z2 + c3Z3

Y = Z1 + c3Z3 + c4Z4

Y = Z1 + c4Z4 + c5Z5

Y = Z1 + c5Z5 + c6Z6⌦1 =
hY d2Y ih123i2

hY 12ihY 23ihY 31i

⌦2 =
hY d2Y ih134i2

hY 13ihY 34ihY 41i

⌦3 =
hY d2Y ih145i2

hY 14ihY 45ihY 51i

⌦4 =
hY d2Y ih156i2

hY 15ihY 56ihY 61i

Write in projective
form



Logarithmic form

✤ Now it makes sense to sum them

✤ Boundaries of the polygon are 

⌦ =
hY d2Y ih123i2

hY 12ihY 23ihY 31i+
hY d2Y ih134i2

hY 13ihY 34ihY 41i+
hY d2Y ih145i2

hY 14ihY 45ihY 51i+
hY d2Y ih156i2

hY 15ihY 56ihY 61i

hY i i+ 1i = 0✤ Consider a point inside a polygon in projective plane

Point inside the polygon

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = C · Z

Space of all points
inside convex polygon

Y = c1Z1 + c2Z2 + . . . cnZn

C =
�
c1 c2 c3 . . . cn

�
2 G+(1, n)

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A 2 M + (3, n)

More formally:



Logarithmic form

✤ Now it makes sense to sum them

✤ Boundaries of the polygon are 

⌦ =
hY d2Y ih123i2

hY 12ihY 23ihY 31i+
hY d2Y ih134i2

hY 13ihY 34ihY 41i+
hY d2Y ih145i2

hY 14ihY 45ihY 51i+
hY d2Y ih156i2

hY 15ihY 56ihY 61i

hY i i+ 1i = 0✤ Consider a point inside a polygon in projective plane

Point inside the polygon

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = C · Z

Space of all points
inside convex polygon

Y = c1Z1 + c2Z2 + . . . cnZn

C =
�
c1 c2 c3 . . . cn

�
2 G+(1, n)

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A 2 M + (3, n)

More formally:

Spurious poles
Cancel in the sum



Logarithmic form

✤ Now it makes sense to sum them

✤ Boundaries of the polygon are 

⌦ =
hY d2Y ih123i2

hY 12ihY 23ihY 31i+
hY d2Y ih134i2

hY 13ihY 34ihY 41i+
hY d2Y ih145i2

hY 14ihY 45ihY 51i+
hY d2Y ih156i2

hY 15ihY 56ihY 61i

hY i i+ 1i = 0✤ Consider a point inside a polygon in projective plane

Point inside the polygon

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = C · Z

Space of all points
inside convex polygon

Y = c1Z1 + c2Z2 + . . . cnZn

C =
�
c1 c2 c3 . . . cn

�
2 G+(1, n)

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A 2 M + (3, n)

More formally:

⌦ =
hY d2Y iN (Y, Zj)

hY 12ihY 23ihY 34ihY 45ihY 56ihY 61i



Similarities with on-shell diagrams

✤ Notice some similarities with recursion relations and 
on-shell diagrams✤ Consider a point inside a polygon in projective plane

Point inside the polygon

Z1

Z2

Z3
Z4

Z5

Z6

Y

Y = C · Z

Space of all points
inside convex polygon

Y = c1Z1 + c2Z2 + . . . cnZn

C =
�
c1 c2 c3 . . . cn

�
2 G+(1, n)

Z =

0

@
" " " " "
Z1 Z2 Z3 . . . Zn

# # # # #

1

A 2 M + (3, n)

More formally:

C =
�
1 0 0 c4 c5 0

�
2 G+(1, 6)

⌦ =
dc4
c4

dc5
c5

⌦ =
hY d2Y ih145i2

hY 14ihY 45ihY 51i

Y = C · Z �(C · Z)

looks similar



Amplituhedron



Amplituhedron

✤ On-shell diagrams triangulate the bigger object which 
represents the scattering amplitude: Amplituhedron

✤ Z - kinematical variables (momentum twistors)

✤ Extension to the loop integrand

Y I
↵ = C↵aZ

I
a

C↵a 2 G+(k, n)
ZI
a 2 M+(n, n+ 4)

Y 2 G(k, k + 4)

tree



Amplitude from Amplituhedron

✤ Amplitude is associated with th form with logarithmic 
singularities on the boundaries of the Amplituhedron

✤ More than just simple poles:

✤ The main work is to triangulate the space

✤ Instead of explaining the precise definition: example of 
the 4pt scattering to all loops

⌦ ⇠ dx

x
near x = 0

dx dy

xy(x+ y)
x=0��! dy

y2



High school problem gg ! gg



✤ Positive quadrant 

High school problem gg ! gg



✤ Positive quadrant 

✤ Vectors

High school problem gg ! gg

~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

Vol (1) =
dx1

x1

dy1
y1

dz1
z1

dw1

w1
=



✤ Positive quadrant 

✤ Vectors

High school problem gg ! gg

~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

Vol (1) =
dx1

x1

dy1
y1

dz1
z1

dw1

w1
=



✤ Positive quadrant 

✤ Vectors

High school problem gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

⇥[Vol (1)]2 =
dx1

x1

dy1
y1

dz1
z1

dw1

w1

dx2

x2

dy2
y2

dz2
z2

dw2

w2
=



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

✤ Impose: (~a2 � ~a1) · (~b2 �~b1)  0

�

� > 90o

Subset of configurations allowed: triangulate



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

�

Vol (2) =
dx1

x1

dy1
y1

dz1
z1

dw1

w1

dx2

x2

dy2
y2

dz2
z2

dw2

w2

"
~a1 ·~b2 + ~a2 ·~b1

(~a2 � ~a1) · (~b2 �~b1)

#



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

~a2 =

✓
x2

y2

◆
~b2 =

✓
z2
w2

◆
~a1 =

✓
x1

y1

◆
~b1 =

✓
z1
w1

◆

Vol (2) =

�



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

(~a1 � ~a2) · (~b1 �~b2)  0

(~a1 � ~a3) · (~b1 �~b3)  0

(~a2 � ~a3) · (~b2 �~b3)  0

~a1,~a2,~a3 ~b1,~b2,~b3

✤ Conditions

Vol (3) =



High school problem

✤ Positive quadrant 

✤ Vectors

gg ! gg

✤ Conditions

~b1,~b2, . . . ,~b`~a1,~a2, . . . ,~a`

(~ai � ~aj) · (~bi �~bj)  0

i, jfor all pairs
Vol (`) = . . . . . .

Let me know if you solve it!



Physics vs geometry

✤ Dynamical particle interactions in 4-dimensions

✤ Static geometry in high                                       
dimensional space



What is scattering amplitude?



3

2

1
6

7

4

5

What is scattering amplitude?



Step 1.1.1.

✤ It is very early to say if/how this can generalize 

✤ Some encouraging news but more work needed

✤ Extend to other theories, beyond the integrand,….



Fantasy

✤ Beyond understanding QFT better there is one more 
motivation

QFT
~!

0

Newton’s 
equations

Action
principle

equivalent



Fantasy

✤ Beyond understanding QFT better there is one more 
motivation

QFT
~!

0

Newton’s 
equations

Action
principle

equivalent

New geometric
formulation

Quantum
gravity

G
!
0

equivalent



Amplitudes as a new field

✤ This is one of the directions in fast developing field

✤ Scattering equations, BCJ duality, string amplitudes, 
supergravity amplitudes, hexagon bootstrap, cluster 
polylogarithms, worldsheet models, integration 
techniques, soft theorems, LHC calculations,….. 

✤ Zeroth order problems open, many chances for young 
people to make big discoveries!



Resources for amplitudes

✤ Books

✤ Many conferences, workshops, summer schools,….



Videos on youtube

✤ In June 2018: QMAP Amplitudes Summer School

QMAP 
University of California 

Davis 

June 11-15, 2018

qmap.ucdavis.edu/events/amplitudes-summer-school

Lecturers include: 
Nima Arkani-Hamed 
Zvi Bern 
Jacob Bourjaily 
Claude Duhr 
Song He 
Eric D’Hoker 
Yutin Huang 
Alexander Postnikov 

Center for Quantum Mathematics And Physics 

Local organizers:  
Lance Dixon, Enrico Herrmann, Jaroslav Trnka, Andrew Waldron 

Questions: 
trnka@ucdavis.edu

Followed by Amplitudes 2018 at SLAC, June 18-22

Solving QFT Experiment

Mathematical
PrinciplesStructures
Physical

Geometry & Amplitudes

Unified Descriptions

Realistic Theories

LHCN = 4 SYM

Amplitudes Summer School 

Mathematical sciences 
building, room 1147 

Lectures online:             
35 hours on various 
topics in amplitudes 
including 11-hour 
marathon lecture by 
Nima Arkani-Hamed

at UC Davis



Thank you!


