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Positive Grassmannian

with the property
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Surprising connection
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Momentum conservation

5(C-Z)=6(C-N§(CE-N)

+ Simple motivation: linearize momentum conservation

5(P) =6 (Z Aaia)

<+ We want to write it as two linear factors
0 (Cab;\/b> 0 (Dapp)

and get the condition: D, = Cj;)



Geometry of delta function

+ 2-planes for \ and ) in n-dimensions

same for
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+ Momentum conservation
Two planes are orthogonal

50> pe) =6(A- )

in the n-dimensional

space



Geometry of delta function

+ Introduce an auxiliary k-plane C' in n-dimensions

C is orthogonal to )\
5(C - \)

C is contains \
= )\ orthogonal to C-

@D
+ This forces )\ and ) to be orthogonal
D)




Logarithmic form

dfr dfz  dfm
fl f2 fm

e 5(C - Z)

<+ Delta functions
5(C-Z)=68(C- ) x8(CH- ) x5(C-7)

3/ \‘ For example

: Solves for some/ all 19
6()\ )\) parameters fj 0 (fl 213§>

Then use }f e = ;O



Logarithmic form

AT df1 dfs df—mé(C-Z)

IR B et o ey L

<« Delta functions
5(C-2)=6(C-X) x5(CL-N)xd5(C-7)

Depending on the dimensionality Polynomial in fermonic 7

¢ We solve for all f; ”
¢ We solve for all f; and in addition delta functions for A, \
¢ Not enough delta functions to solve for all f; - some left unspecified




Derivation: starting with 3pt

5(1)(0 : Z) =i 51X2(C'5\/)52X2(>\ : CJ_)51><4(C ) 7’:}’)

o 1 0 Z1

AR,




Amalgamation procedure

+ Construct big positive matrix from small ones

Gluing preserves
(% * *) ( i ) positivity of minors

+ Arbitrary graph: positive matrix
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New procedure

+ Write the amplitude as a sum of on-shell diagrams
using recursion relations

+ For each on-shell diagram construct the C-matrix
using the boundary measurement

+ Write logarithmic form which calculates the diagram



Definition of the theory

+ Why is this for N=4 SYM? What about other theories?
+ Diagrams and connection to Grassmannian is general

+ Specific for theory: differential form

do do doy,
N=4 SYM: Nt Sl TV 0 4
a1 Q2 827




Definition of the theory

+ Why is this for N=4 SYM? What about other theories?
+ Diagrams and connection to Grassmannian is general

+ Specific for theory: differential form

General QFT: | Q= F(a)d(C - Z)

+ In a sense F(«) defines a theory (as Lagrangian does)



Fxploring space of theories

* One step at a time away from N=4 S5YM

+ Case 1: planar N<4 SYM (including QCD)

(o fondon o 00n - op i il

Q 5 Q1 Q2 QX




Fxploring space of theories

+ Case 2: Non-planar N=4 5YM

same form as planar

i oo ...m—”a(c 5

] 9 079

() =

less is known on mathematical side

+ Case 3: N=8 Supergravity Both have natural
extensions to lower SUSY
2 doq dOéQ d

Xmy
0= ——... o []A.-sC-2)
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Back to planar N=4 SYM theory

+ Each on-shell diagram has a nice geometric
interpretation

+ To get the amplitude we use the recursion relations =
consequence of the factorization of tree-level amplitudes

+ From geometric point of view: why this particular sum?

+ Goal: to find the geometric formulation for the full
amplitude



Inside of the triangle




Inside of the triangle

+ Let us consider three points in a projective plane
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Inside of the triangle

+ Point inside the triangle

+ Point inside the triangle

Y =c141 + cado + c343

Projective: one ofc; can be fixed to 1

>k
Zj — >k ZJ ~ th
i 1
We can
gy
also fix ( i )
J

c1,Co,c3 > 0



Inside of the triangle

+ Point inside the triangle

£ Y =c1Z1 4+ cody + c3Z3
5 On the boundary
Y Zg C3y — 0

A




Inside of the triangle

+ Point inside the triangle

£ Y =c1Z1 4+ cody + c3Z3
; On the boundary
Y Zg C1 — 0

A




Inside of the triangle

+ Point inside the triangle

29 Y =121+ caZs + c343
/\ On the boundary
LY Zg O = 0
Z1




Inside of the triangle

+ Point inside the triangle

£ Y =c1Z1 4+ cody + c3Z3
On the boundary
7 Y Zg &) i —= G — 0

A




Logarithmic form

+ Point inside the triangle




Logarithmic form

+ Point inside the triangle

ZQ CgZO

- Y=21+c:222+@%
Y 7

A
+ Form with logarithmic singularities on boundaries
dcg dc dc
i QR =00

Co C3 Co



Logarithmic form

+ Point inside the triangle

) ng




Logarithmic form

+ Point inside the triangle




Logarithmic form

+ Point inside the triangle

ZQ 02263:()

Y= 2+ o+ o
Y 7

Zi
+ Form with logarithmic singularities on boundaries
O dCQ ng > ng gt
€2 €3 €3

+ Other boundaries can correspond to ¢z, c3 — o



L.ogarithmic form

+ Form with logarithmic singularities on boundaries

dco dcs (X X Xl o= e XD
Co2 C3 d°Y = dcy des ZoZs

() =

* Solve for ENiCa from Y = Zl i CQZQ 7 Cng
v
TAEs Y d?Y (128 )¢
no 8 (@Y
(Y'23) (Y 23) (Y'23)




Logarithmic form

+ Form with logarithmic singularities on boundaries

dcg des (X1 X0 Xa) = Eape X D600

) =
Co2 C3 d°Y = dcy des ZoZs

“+ Solve for ENiCa from Y = Zl I CQZQ 7 Cng

(Y d?Y){123)? Projective in all
SN a0 S VI variables




Polygon




Point iside the polygon

+ Consider a point inside a polygon in projective plane

Ya =Ciili e e Zh i e

!

Cj>0

interior of the polygon

+ Convex polygon: condition on points Z;
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Point iside the polygon

+ Consider a point inside a polygon in projective plane

Ya =Ciili e e Zh i e

Space of all points
inside convex polygon
More formally:
Ve C:(Cl Coer ot Cn)EG+(1,Tl)

( (eptle e A SRR )
Y — L e e A R T & M_|_(3, n)
!



Logarithmic form

+ Form with logarithmic singularities on boundaries

Ya =Ciili e e Zh i e

First guess

~dcy deo dﬁ

(2

e A



Logarithmic form

+ Form with logarithmic singularities on boundaries

Ya =Ciili e e Zh i e

First guess

Space of all Y is only two-dimensional

¢ Two-form with n poles
0 dCl dCQ N(Cl, Cg)
D(Cl, CQ)




Logarithmic form

+ Hasiest way how to write the form is to triangulate




Logarithmic form

+ Hasiest way how to write the form is to triangulate

A4
y 74 4 Y =71+ c3243+ casy
ZQ o ¥ ' 92 i ng dC4 C3,C4q Z 0

A 4 WY =21+ caZs + 5 Zs

e decy des c4,c5 > 0

L ey rriis:

dCZ dCS co,c3 > 0
()1 =
COMSES

Y =21 + 545 + ceZe

des decg ¢s,¢6 > 0 How to sum them?
C5 Cg

e —




Logarithmic form

+ Hasiest way how to write the form is to triangulate

74 4 Y =71+ c3243+ casy

78" | g, o (Y (132
- (Y13)(Y 34) (Y 41}
A NY =21ty 525

| " (Y d2Y)(145)2

o

Y 14)(Y 45)(Y'51

Y = Z1 +caZo + 343 WA Sanae
oI PR R e P R e o e
T AR LT G2 T %261 Write in projective

(Y d2Y')(156)
(Y15)(Y56) (Y 61) form




Logarithmic form

+ Now it makes sense to sum them

e <Yd2Y><123>2 n <Yd2Y><134>2 El <Yd2y><145>2 A <Yd2Y><156>2

(Y12)(Y23)(Y31) | (Y13)(Y34)(Y4l) ' (Y14)(Y45)(Y51) (Y 15)(Y56)(Y61)

+ Boundaries of the polygon are (Yii+ 1) =0




Logarithmic form

<« Now it makes sense to sum them

e (Y d?Y)(123)? i AR d?Y)(145)* Y d?Y ) (156)°
= <Y12><Y23}{<Y31§+(<Y13}><Y34@++@<Y56><Y61>

+ Boundaries of the polygon are\Y ii + 1) =~ 0

Spurious poles

Cancel in the sum




Logarithmic form

<« Now it makes sense to sum them

e (Y d?Y)(123)? i AR d?Y)(145)* Y d?Y ) (156)°
= <Y12><Y23}(<Y31§+(<Y13}><Y34@++@<Y56><Y61>

+ Boundaries of the polygon are\Y ii + 1) =~ 0

Y 2YYN(Y, Z;)
(Y12) (Y 23) (Y 34) (Y 45) (Y 56) (Y 61)




Similarities with on-shell diagrams

<+ Notice some similarities with recursion relations and

on-shell diagrams
Ci={ 1 005 e s 0 eiGeiEsG)

107 0 dcy dcs
: S
E% C4 C5 looks similar
Ve G 6o(C - Z2)

(Y d2Y ) (145)2
(Y14)(Y45)(Y 51)
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Amplituhedron




Amplituhedron

+ On-shell diagrams triangulate the bigger object which
represents the scattering amplitude: Amplituhedron

Caa, = G+(k,n)
ch S M+(n7n+4)
Y €e Gk, k+ 4)

tree YO{ = C’aaZC{

% 7 - kinematical variables (momentum twistors)

+ Extension to the loop integrand



Amplitude from Amplituhedron

+ Amplitude is associated with th form with logarithmic
singularities on the boundaries of the Amplituhedron

dx

() oo E= near x =20
ol

+ More than just simple poles:

dx dy r=0_ dy
ry(r +y) y?
+ The main work is to triangulate the space

+ Instead of explaining the precise definition: example of
the 4pt scattering to all loops



High school problem gg — gg




High school problem gg — gg

+ Positive quadrant




High school problem gg — gg

+ Positive quadrant

<+ Vectors

dxq dy; dz1 dwq
Vol (1) =
0 () r1 Y1 <1 Wiy




High school problem gg — gg

+ Positive quadrant

<+ Vectors

dz, d
Vol (1) = 201 dy1 dzy dwy

L1 Y1 <1 W3



High school problem gg — gg

+ Positive quadrant

<+ Vectors

- dﬂ?l dyl le dw1 dQZ‘Q dyQ dZQ dUJQ

L1 Yr <1

wy T2 Y2 <22 W2




High school problem gg — gg

+ Positive quadrant

<+ Vectors

(B 0) i (bpbr D

e

>

¢® > 90°

Subset of configurations allowed: triangulate



High school problem gg — gg

+ Positive quadrant

<+ Vectors

L]
Y1

S|

1

-(3) 5-(2)
Y2 L2
Vol (2) — dxy dyy dzy dwy dzo dys dze dws _)671 _5:2 + CZZ ‘ 51_)

1 Y1 <21 W1 To9 Yz 22 W2




High school problem gg — gg

+ Positive quadrant

<+ Vectors

Vol (2) =




High school problem gg — gg

+ Positive quadrant

<+ Vectors

a1,d2,ds bl,bg,bg

<+ Conditions

[ 4G5) > (by— ba) <0
e G et
(@1t (ﬁ1 43) < Vol (3) —
bl R lor= bl Sl




High school problem gg — gg

+ Positive quadrant A
* Vectors

517627°°°7a€ bl,bz,...,bg
+ Conditions

(d@; — d@j) - (b — b;) <O
for all pairs 7, )

Let me know if you solve it!



Physics vs geometry

+ Dynamical particle interactions in 4-dimensions

+ Static geometry in high
dimensional space




What is scattering amplitude?




What is scattering amplitude?




Step 1.1.1.

+ It is very early to say if/how this can generalize
+ Some encouraging news but more work needed

+ Extend to other theories, beyond the integrand,....



Fantasy

+ Beyond understanding QFT better there is one more
motivation

Newton’s
equations

QFT

equivalent

Action
principle



Fantasy

Beyond understanding QFT better there is one more
motivation

Newton’s
equations

Quantum

gravity QF1

equivalent Y equivalent

Action
principle

New geometric
formulation



Amplitudes as a new field

+ This is one of the directions in fast developing field

+ Scattering equations, BCJ duality, string amplitudes,
supergravity amplitudes, hexagon bootstrap, cluster
polylogarithms, worldsheet models, integration
techniques, soft theorems, LHC calculations,.....

+ Zeroth order problems open, many chances for young
people to make big discoveries!



Resources for amplitudes

NIMA ARKANI-HAMED
JACDES BOURJAILY
FREDDY CACHAZD

ALEXANDER GONCHARDYV

Johannes M. Henn ¥ = ALEXANDER POSTNIKOV
g ! L JARDSLAY TRNK A

Jan C. Plefka =W =

GRASSMANNIAN
GEQMVIETRY OF

SCATTERING
AMPLITUDES

Scattering

Amplitudes
in Gauge SCATTERING

AMPLITUDES

TheorieS IN GAUGE THEORY

AND GRAVITY

+ Many conferences, workshops, summer schools,....



Videos on youtube

+ In June 2018: QMAP Amplitudes Summer School

CENTER FOR QUANTUM MATHEMATICS AND PHYSICS at UC D aVIS

UNivERSITY OF CALIFORNIA
Davis

JUNE 11-15, 2018

Lectures online:
AMPLITUDES SUMMER SCHOOL .
< 35 hours on various
oo topics in amplitudes
including 11-hour
g Followed by Amplitudes 2018 at SLAC, June 18-22 mar ath On 1 e Cture by

Craupe Dunr
Lance Dixon, Enrico Herrmann, Jaroslav Trnka, Andrew Waldron

Sonc HE
QMAP.UCDAVIS.EDU/ EVENTS/ AMPLITUDES-SUMMER-SCHOOL N 1m a Arkanl- H ame d

Eric D’HokEer

Yurmv Huane

(QUESTIONS: MATHEMATICAL SCIENCES

TRNKA(@UCDAVIS.EDU  BUILDING, ROOM TI47  {;\[VERSITY OF CALIFORNIA

ALEXANDER PoSTNIKOV



Thank you!



