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Magnetic Poisson Structures

M =R? configuration space x', M* momentum space p;,
M =T*M= M x M* ‘phase space’ X' = (x', p;), with canonical
symplectic form oo(X, X' )=p-x' —p’ - x

p € Q?(M) ‘magnetic field' deforms o to almost symplectic form:
Op =00 —p

0, = 051 defines magnetic Poisson algebra {f, g}, = 0,(df A dg)
on C*®(M):

(X', x}, =0, {X.p}, =65 . {pipite = —pi(x)

H-twisted Poisson structure on M with H = dp ‘magnetic charge’
[0,,0,]s = A° 0%(do,) gives nonassociative algebra with
Jacobiators {f, g, h}, =[0,,0,]s(df Adg A dh):

{pi, pjs i} p = —Hij(x) (Giinaydin & Zumino '85)
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static magnetic field B on R3
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Magnetic Monopoles

» d =3 and p; = ecjx BX governs motion of electric charge e in a
static magnetic field B on R3
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» dp =0 gives classical Maxwell theory V-B =0 , B=VxA
» Dirac monopole field on R3\ {0}: V- Bp = 4 g 6(x)
= X
Bp = g —=
P ERP
> In the lab: Neutron scattering off spin ice pyrochlore lattices
(Castelnovo, Moessner & Sondhi '08; Morris et al. '09; ..
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Magnetic Monopoles

» d =3 and p; = ecjx BX governs motion of electric charge e in a
static magnetic field B on R3
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dp =0 gives classical Maxwell theory V-B =10 , B=VxA
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Dirac monopole field on R3\ {0}: V- Bp = 47 g §(X)
= X
Bp = g.=3
D g |X|3
In the lab: Neutron scattering off spin ice pyrochlore lattices
(Castelnovo, Moessner & Sondhi '08; Morris et al. '09; ..
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» Smooth H = dp # 0 gives smooth distributions V-B #0
of magnetic charge
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Locally Non-Geometric Fluxes

» Born reciprocity (x, p) — (p, —x) preserves oo, maps
p € (M) — B e Q?(M*) with twisted Poisson brackets:

X' XY ==8%p) , {<.pts=6 , {pi,p}ls=0



Locally Non-Geometric Fluxes

» Born reciprocity (x, p) — (p, —x) preserves oo, maps
p € (M) — B e Q?(M*) with twisted Poisson brackets:

X' XY ==8%p) , {<.pts=6 , {pi,p}ls=0

» Twisting by ‘R-flux’ R =dB3 € Q3(M*) gives nonassociative
configuration space:

{Xiaxjvxk},@ = _Rijk(p)



Locally Non-Geometric Fluxes

» Born reciprocity (x, p) — (p, —x) preserves oo, maps
p € (M) — B e Q?(M*) with twisted Poisson brackets:

X' XY ==8%p) , {<.pts=6 , {pi,p}ls=0

» Twisting by ‘R-flux’ R =dB3 € Q3(M*) gives nonassociative
configuration space:

{Xiaxjvxk},@ = _Rijk(p)

> R-flux model: Phase space of closed strings propagating in

‘locally non-geometric’ R-flux backgrounds (Blumenhagen & Plauschinn '10;
List '10; Blumenhagen, Deser, Liist, Plauschinn & Rennecke '11;
Mylonas, Schupp & Sz '12; Freidel, Leigh & Minic '17; ...)
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» For d = 3, motion in magnetic field B (with or without sources)
governed by Lorentz force

pxB , p = mX

Hamiltonian equations X' = {X/, %}, for H = ;L p2
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» B = constant:
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velocity along B-direction




Classical Motion in Fields of Magnetic Charge

» For d = 3, motion in magnetic field B (with or without sources)
governed by Lorentz force

—

p=—pxB , f=mx

3o

Hamiltonian equations X! = {X’,’H}p for H = % p>

m

> ,§ — constant:

Motion follows helical trajectory with uniform
velocity along B-direction

C—
>

» Dirac monopole field B = Bp: (Bakas & Liist '13

)
Conservation of Poincaré vector K confines
motion to surface of cone, electric charge never
reaches magnetic monopole and
nonassociativity plays no role
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Classical Motion in Fields of Magnetic Charge

» B = (0,0, H z), constant magnetic charge H: (Kupriyanov & Sz '18)

[T

] ; |

Motion follows Euler spiral with uniform ‘ ‘
velocity along z-direction | g
Y

|
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» B = % H X, constant magnetic charge H: Motion is no longer

integrable or confined, equivalent to motion in Dirac monopole field
Bp with additional frictional forces (Bakas & Liist '13)

» Questions:

» What substitutes for canonical quantization of locally non-geometric
closed strings?

> |s there a sensible nonassociative quantum mechanics?



Quantization of Magnetic Poisson Structures

» Quantization Linear map f +—— O for f € C®(M):
[Of,(’)g] = ih@{ﬁg}p + O(h2)

[0,04]=0 , [04,0,]=ihé";1 | [0p,0p]=—ihp;j(Ox)
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Quantization of Magnetic Poisson Structures
» Quantization Linear map f +—— O for f € C®(M):
[Of, Ogl = ih Oyt g3, + O(R?)
[0, 041=0  [04,05] = 1761, [0,,05] = —ilip;(Ox)
» Magnetic translation operators P, = exp (% Op.v):

PLOGP, = Oy

> Representation of translation group R9? (Jackiw '85)

PW Pv = e i¢2(X;V,W) 7)v+w , PW (Pv Pu) = ¢ i¢3(x;u.v,w) (PW Pv) Pu
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Quantization with dp = 0

» p=dA= Fg. is curvature of a (trivial) line bundle L — M = R¢

> O = x ., 0y = —ihVE = —ihd+ A
Represented on quantum Hilbert space H = L?(M, L) = L3(M)

» Magnetic translations given by parallel transport in L (Wilson lines):

/ P =ep(~ [ AJvixv)

X=Vv

» Defines weak projective representation of translation group R on H:

(P Put)(x) = wv,w(x) (Prwt))(x)

Wy,w(x) = exp (—% /AZ( " p) ( = 2 PvW) for P constant)

> Wy, w(x — U)W;}v w(X)Wu vw(x )wv,\%v(x) =1
2-cocycle on R with values in C*°(M, U(1))
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» Magnetic Weyl transform f € C*®°(M) — Of € End(H):

W(x,p): H—H , (W p)b)(y) = e P* e Y (Pap)(y)
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» Magnetic Moyal-Weyl star product Ofy,g = Or Og:
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Quantization with dp = 0

» Magnetic Weyl transform f € C®°(M) — Of € End(H):

W(x,p): H—H , (W p)b)(y) = e P* e Y (Pap)(y)

o= [ ([, o0 rn 5 woo 575

» Magnetic Moyal-Weyl star product Ofy,g = Or Og:

2i
e D) o aax—y—2) F(X—Y) g(X—2Z) dY dZ

1
(F208)(X) = s

( - / _/ DF(X —Y)g(X —2)dy dZ forp constant)
(m fL

» Geometric quantization (canonical quantum mechanics)
= deformation quantization (phase space quantum mechanics):
Observables/states: (real) functions on phase space
Operator product: star product , Traces: integration
State function (density matrix): $>0 , [, S=
Expectation values: (O) = [, O%,S ...

vvyY vy
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Quantization with H=dp #0

» Operator/state formulation of canonical quantization
(geometric quantization) cannot handle nonassociative magnetic

Poisson algebras

» For Dirac monopole Bp = gx/|%|*:
> Magnetic Poisson algebra is associative on M° = R*\ {0},
p = dAp locally
» Quantum Hilbert space is # = L?*(M°, L) for a non-trivial line

bundle L — M° iff Dirac charge quantization: 26% €z

(Wu & Yang '76)
> Magnetic Weyl transform on M° induces associative phase space
star product (Soloviev '17)

» For generic smooth distributions H € Q3(M), standard geometric
quantization breaks down



Deformation Quantization

» For any H = dp € Q3(M), Kontsevich formality provides
noncommutative and nonassociative star product on C°°(M)[[A]]:

ih (ih)" N
f*Hg:fg—i—?{f,g}p—l—; o bn(f, g) /_//76p
f 8
[f. g, hls, = =R {f h}—i—z(ih)nt(f h) (%8s
y 85 Mxy = '8 P nl n\7,8, L
n=3 A
f g h

where b, = U,(0,,...,0,) and t, = Unt1([0,,0,]s,60,,...,0,)
are bi-/tri-differential operators (Mylonas, Schupp & Sz '12)



Deformation Quantization

» For any H = dp € Q3(M), Kontsevich formality provides
noncommutative and nonassociative star product on C°°(M)[[A]]:

f*Hg—fg—i— {fg}p-l-z - 7%
n>2
f g
(in)" O [6p-6]
[f7g7 h]*H = —ﬁz{f,g’ h}P nl tn(fvg? h) S
n>3 A
f 8 h
where b, = U,(0,,...,0,) and t, = Unt1([0,,0,]s,60,,...,0,)
are bi-/tri-differential operators (Mylonas, Schupp & Sz '12)
> For H constant, p;j(x) = 3 Hjxx*:

(Fxng)(X) = m // e~ VD) F(X-Y)g(X—-2Z)dY dZ
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Deformation Quantization

Nonassociative magnetic translations P, := e "RV give 3-cocycle:
Pv *H PW = nv,w(x) Pv+w
(Pu *H Pv) *H PW - Wu,v,W(X) Pu *H (Pv *H Pw)
where T, (x) = e ~ar HOwvw) and Wuvw(Xx) = o an H(uv.w)

Phase space formulation of nonassociative quantum mechanics is

physically sensible and gives novel quantitative predictions
(Mylonas, Schupp & Sz '13)

R-flux model: Expectation values of oriented volume uncertainty
operators Vik = <% [Axi,ij,Axk]*H> give quantum of volume

ik 142 piik
Vi = Sh°RY
For d = 3, no DO-branes in locally non-geometric string backgrounds

Problems: Quantization formal in /A for non-constant H,
issues with dynamics, ...
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Symplectic realization of a Poisson structure 6 on M:

Symplectic manifold (S,€Q) with surjective submersion S — M
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Symplectic Realization

Symplectic realization of a Poisson structure 6 on M:
Symplectic manifold (S,Q) with surjective submersion S — M

which is a Poisson map (Weinstein '83; Karasev '87;
Coste, Dazord & Weinstein '87; Cattaneo & Xu '04)

Local symplectic realization of magnetic Poisson structure “doubles”
M to extended phase space (x',%',p;, p;) using local Darboux
coordinates (x',m;) and (X',7;) with generalized Bopp shifts
pi = W/—%p,'j(X))N(J ) ﬁ,‘ = (Kupriyanov & Sz '18)
{.p} = {&,p} = {x'.B} =
{pi,pi} = pi(x) + 5 % (Bpi(x) — Hyx(x))
{piB} = (PP} = 3pi(x)
Quantization on C®(M): Op, = ih% , Oy = fiha%i
coincide with associative composition algebra (Diff(M),oy) of

observables in nonassociative quantum mechanics:

(fon g)*H v = f xy (g *H ¥)
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» O(d,d)x0(d, d)-invariant Hamiltonian:
_ 1 1 _ ~ _ (0 14
Ho=—pn"p . p = (pisBi) » n = <]ld 0

For d = 3 reproduces Lorentz force [5
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Symplectic Realization

O(d, d)x0O(d, d)-invariant Hamiltonian:
1 v _ ~ _ (0 14
Ho=—pnps . p=(ph), 0= <]ld 0

For d = 3 reproduces Lorentz force [5 = 2px B, p = mx

Consistent Hamiltonian reduction eliminates auxiliary coordinates iff
H = 0: No polarisation of extended symplectic algebra consistent
with Lorentz force and nonassociative magnetic Poisson algebra

Dynamics: For H constant, equivalent to motion in Dirac monopole
field ED with additional frictional forces
Extra degrees of freedom represent reservoir?

Problems: Physical meaning of spurious degrees of freedom,
3-cocycles for magnetic translations “hidden” in extra variables, ...

Higher structures: Replace Hilbert spaces with 2-Hilbert spaces of
sections of a suitable geometric object which encodes H =dp # 0
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Bundle Gerbes

» For m:Y — M surjective submersion: Yl = YV xy--xuY
forms a simplicial space with face maps 7 : Y[PI — ylp—1l

> (Y[2] = Y) = pair groupoid with source/target maps /1,
orbit space M

» Bundle gerbe (L, Y) = groupoid central extension: (Murray '96)
T3 (L) ® w (L) < 7w5(L) L
| {
Yo —=v = vy
e T l
M

» Groupoid multiplication gives bundle gerbe multiplication
pmi(L) @ (L) —— 7w5(L) over YBI, associative over Y

» Connection: p € Q3(Y) satisfying 75(p) — 75 (p) = Fyr,
curvature is H = dp , He€ Q3(M)
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» Bundle gerbes G = (L,Y) = M are objects in a symmetric
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» 2-Hilbert space of sections (M, G): Hilb-module category of
morphisms Zog — G from trivial bundle gerbe Z; with:

> Rig module category structure over rig category HVbdI(M)
> Inner product bifunctor {, ):T(M,G)°® x I'(M,G) — Hilb



Sections of Bundle Gerbes

» Bundle gerbes G = (L,Y) = M are objects in a symmetric
monoidal 2-category (Waldorf '07; Bunk, Simann & Sz '16)

» 2-Hilbert space of sections (M, G): Hilb-module category of
morphisms Zog — G from trivial bundle gerbe Z; with:
> Rig module category structure over rig category HVbdI(M)
> Inner product bifunctor {, ):T(M,G)°® x I'(M,G) — Hilb

» Simple description on M = RY for trivial bundle gerbes G = L,
M x C p € Q*(M)

S

M —
> Objects are vector bundles with connection: 7 € Q'(M, u(n))

» Morphisms are parallel morphisms: f : 7 — 7’ is a function
f: M — Mat(n x n') satisfying in'f = ifn—df
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» Parallel transport functor P, : [(M,Z,) — (M, Z,):
(Bunk, Miiller & Sz '18)

P = rho@ 4y [ e PG = A

Weak module functor: P, (£ ®n) = v*(£) @ P, (1), & € QYM, u(k))
» Coherence isomorphisms I, ., : P, o Py = Xv,w ® Pyiw:

1
Xv,wlx(a) = 7 / taH (connection 1-form of trivial line bundle on M)
A2(x;w,v)

My win(x) := exp ( - % /AZ( : p) (= e ~om MO for 1y constant)

> “Nonassociativity” of P, 0P, o Py:
I-IU-%—V,W S I-IU,V(X) - wu,v,W(X) I-Iu,v+w Opu(nv,w)(x)

Wu,v,w - Xu+v,w ® Xu,v — Xu,v+w ® U*(Xv,w)

Wu,v,w(X) = exp (;i /A3( ) H)



Nonassociative Magnetic Translations

» Parallel transport functor P, : [(M,Z,) — (M, Z,):
(Bunk, Miiller & Sz '18)

P = rho@ 4y [ e PG = A

Weak module functor: P, (£ ®n) = v*(£) @ P, (1), & € QYM, u(k))
» Coherence isomorphisms I, ., : P, o Py = Xv,w ® Pyiw:

1
Xv,wlx(a) = 7 / taH (connection 1-form of trivial line bundle on M)
A2(x;w,v)

My win(x) := exp ( - % /AZ( : p) (= e ~om MO for 1y constant)

> “Nonassociativity” of P, 0P, o Py:
Mutvwo I-Iu,v(X) = Wu,v,w(X) Myyviwo Pu(l'lv,w)(x)
Wu,v,w * Xutv,w ® Xu,vy — Xu,v4w ® U*(Xv,w)

wa,v,w(X) = exp (;i /A3( : H) (=e o Hwvw) for | constant)
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» Theorem: (Bunk, Miiller & Sz '18)
(Pv,My.w) define a weak projective 2-representation of the
translation group R? on the HVbdI(M)-module category [(M,Z,)
(2-Hilbert space of sections of the bundle gerbe Z,)



Higher Projective Representations

wu,v,w define a 3-cocycle on R? with values in C>°(M, U(1))

(Xv.wsWuv.w) define a higher weak 2-cocycle on R? with values in
the Hilb-algebra category HVbdI(M)

Theorem: (Bunk, Miiller & Sz '18)

(Pv,My.w) define a weak projective 2-representation of the
translation group R? on the HVbdI(M)-module category [(M,Z,)
(2-Hilbert space of sections of the bundle gerbe Z,)

Open issues:

» Understand physical significance of 2-Hilbert space ['(M,Z,):
states, observables, ...

> Develop “Higher magnetic Weyl transform” to bridge
higher geometric quantization with deformation quantization



