Richard Szabo

CCDSE Action MP 1405

Quantum Structure of Spacetime

QSPACE Training School III Centro de Ciencias de Benasque Pedro Pascual

September 28, 2018

Outline

- Magnetic Poisson structures
- Classical & quantum dynamics in fields of magnetic charge
- Deformation quantization
- Symplectic realization
- Higher geometric quantization

► $M = \mathbb{R}^d$ configuration space x^i , M^* momentum space p_i , $\mathcal{M} = T^*M = M \times M^*$ 'phase space' $X^I = (x^i, p_i)$, with canonical symplectic form $\sigma_0(X, X') = p \cdot x' - p' \cdot x$

► $M = \mathbb{R}^d$ configuration space x^i , M^* momentum space p_i , $\mathcal{M} = T^*M = M \times M^*$ 'phase space' $X^I = (x^i, p_i)$, with canonical symplectic form $\sigma_0(X, X') = p \cdot x' - p' \cdot x$

• $\rho \in \Omega^2(M)$ 'magnetic field' deforms σ_0 to almost symplectic form:

$$\sigma_{\rho} = \sigma_0 - \rho$$

► $M = \mathbb{R}^d$ configuration space x^i , M^* momentum space p_i , $\mathcal{M} = T^*M = M \times M^*$ 'phase space' $X^I = (x^i, p_i)$, with canonical symplectic form $\sigma_0(X, X') = p \cdot x' - p' \cdot x$

• $\rho \in \Omega^2(M)$ 'magnetic field' deforms σ_0 to almost symplectic form:

$$\sigma_{\rho} = \sigma_0 - \rho$$

θ_ρ = σ_ρ⁻¹ defines magnetic Poisson algebra {f,g}_ρ = θ_ρ(df ∧ dg) on C[∞](M):

$$\{x^{i}, x^{j}\}_{\rho} = 0$$
 , $\{x^{i}, p_{j}\}_{\rho} = \delta^{i}{}_{j}$, $\{p_{i}, p_{j}\}_{\rho} = -\rho_{ij}(x)$

• $M = \mathbb{R}^d$ configuration space x^i , M^* momentum space p_i , $\mathcal{M} = T^*M = M \times M^*$ 'phase space' $X^I = (x^i, p_i)$, with canonical symplectic form $\sigma_0(X, X') = p \cdot x' - p' \cdot x$

• $\rho \in \Omega^2(M)$ 'magnetic field' deforms σ_0 to almost symplectic form:

$$\sigma_{\rho} = \sigma_0 - \rho$$

θ_ρ = σ_ρ⁻¹ defines magnetic Poisson algebra {f,g}_ρ = θ_ρ(df ∧ dg) on C[∞](M):

$$\{x^{i}, x^{j}\}_{\rho} = 0$$
 , $\{x^{i}, p_{j}\}_{\rho} = \delta^{i}{}_{j}$, $\{p_{i}, p_{j}\}_{\rho} = -\rho_{ij}(x)$

▶ *H*-twisted Poisson structure on \mathcal{M} with $H = d\rho$ 'magnetic charge' $[\theta_{\rho}, \theta_{\rho}]_{\mathrm{S}} = \bigwedge^{3} \theta_{\rho}^{\sharp}(\mathrm{d}\sigma_{\rho})$ gives nonassociative algebra with Jacobiators $\{f, g, h\}_{\rho} = [\theta_{\rho}, \theta_{\rho}]_{\mathrm{S}}(\mathrm{d}f \wedge \mathrm{d}g \wedge \mathrm{d}h)$:

$$\{p_i, p_j, p_k\}_{
ho} = -H_{ijk}(x)$$
 (Günaydin & Zumino '85)

▶ d = 3 and $\rho_{ij} = e \varepsilon_{ijk} B^k$ governs motion of electric charge e in a static magnetic field \vec{B} on \mathbb{R}^3

▶ d = 3 and $\rho_{ij} = e \varepsilon_{ijk} B^k$ governs motion of electric charge e in a static magnetic field \vec{B} on \mathbb{R}^3

▶ $d\rho = 0$ gives classical Maxwell theory $\vec{\nabla} \cdot \vec{B} = 0$, $\vec{B} = \vec{\nabla} \times \vec{A}$

- ▶ d = 3 and $\rho_{ij} = e \varepsilon_{ijk} B^k$ governs motion of electric charge e in a static magnetic field \vec{B} on \mathbb{R}^3
- ▶ $d\rho = 0$ gives classical Maxwell theory $\vec{\nabla} \cdot \vec{B} = 0$, $\vec{B} = \vec{\nabla} \times \vec{A}$
- Dirac monopole field on $\mathbb{R}^3 \setminus \{0\}$: $\vec{\nabla} \cdot \vec{B}_D = 4\pi g \,\delta(\vec{x})$

$$ec{B}_{\mathrm{D}} = g \, rac{ec{x}}{|ec{x}|^3} = ec{
abla} imes ec{A}_{\mathrm{D}} \ , \qquad ec{A}_{\mathrm{D}} = rac{g}{|ec{x}|} rac{ec{x} imes ec{n}}{|ec{x}| - ec{x} \cdot ec{n}}$$

- ▶ d = 3 and $\rho_{ij} = e \varepsilon_{ijk} B^k$ governs motion of electric charge e in a static magnetic field \vec{B} on \mathbb{R}^3
- ▶ $d\rho = 0$ gives classical Maxwell theory $\vec{\nabla} \cdot \vec{B} = 0$, $\vec{B} = \vec{\nabla} \times \vec{A}$
- Dirac monopole field on $\mathbb{R}^3 \setminus \{0\}$: $\vec{\nabla} \cdot \vec{B}_D = 4\pi g \,\delta(\vec{x})$

$$ec{\mathcal{B}}_{\mathrm{D}} \;=\; g \; rac{ec{x}}{|ec{x}|^3} \;=\; ec{
abla} imes ec{\mathcal{A}}_{\mathrm{D}} \;\;, \qquad ec{\mathcal{A}}_{\mathrm{D}} \;\;=\; rac{\mathsf{g}}{|ec{x}|} \; rac{ec{x} imes ec{n}}{|ec{x}| - ec{x} \cdot ec{n}}$$

In the lab: Neutron scattering off spin ice pyrochlore lattices (Castelnovo, Moessner & Sondhi '08; Morris et al. '09; ...)

- ▶ d = 3 and $\rho_{ij} = e \varepsilon_{ijk} B^k$ governs motion of electric charge e in a static magnetic field \vec{B} on \mathbb{R}^3
- ▶ $d\rho = 0$ gives classical Maxwell theory $\vec{\nabla} \cdot \vec{B} = 0$, $\vec{B} = \vec{\nabla} \times \vec{A}$
- Dirac monopole field on $\mathbb{R}^3 \setminus \{0\}$: $\vec{\nabla} \cdot \vec{B}_D = 4\pi g \,\delta(\vec{x})$

$$ec{\mathcal{B}}_{\mathrm{D}} \;=\; g \; rac{ec{x}}{|ec{x}|^3} \;=\; ec{
abla} imes ec{\mathcal{A}}_{\mathrm{D}} \;\;, \qquad ec{\mathcal{A}}_{\mathrm{D}} \;\;=\;\; rac{g}{|ec{x}|} \; rac{ec{x} imes ec{n}}{|ec{x}| - ec{x} \cdot ec{n}}$$

In the lab: Neutron scattering off spin ice pyrochlore lattices (Castelnovo, Moessner & Sondhi '08; Morris et al. '09; ...)

Smooth $H = d\rho \neq 0$ gives smooth distributions $\vec{\nabla} \cdot \vec{B} \neq 0$ of magnetic charge

Locally Non-Geometric Fluxes

► Born reciprocity $(x, p) \mapsto (p, -x)$ preserves σ_0 , maps $\rho \in \Omega^2(M) \mapsto \beta \in \Omega^2(M^*)$ with twisted Poisson brackets:

$$\{x^{i}, x^{j}\}_{\beta} = -\beta^{ij}(p) \quad , \quad \{x^{i}, p_{j}\}_{\beta} = \delta^{i}{}_{j} \quad , \quad \{p_{i}, p_{j}\}_{\beta} = 0$$

Locally Non-Geometric Fluxes

► Born reciprocity $(x, p) \mapsto (p, -x)$ preserves σ_0 , maps $\rho \in \Omega^2(M) \mapsto \beta \in \Omega^2(M^*)$ with twisted Poisson brackets:

$$\{x^{i}, x^{j}\}_{\beta} = -\beta^{ij}(p) \quad , \quad \{x^{i}, p_{j}\}_{\beta} = \delta^{i}{}_{j} \quad , \quad \{p_{i}, p_{j}\}_{\beta} = 0$$

► Twisting by '*R*-flux' *R* = dβ ∈ Ω³(*M**) gives nonassociative configuration space:

$$\{x^i, x^j, x^k\}_{\beta} = -R^{ijk}(p)$$

Locally Non-Geometric Fluxes

▶ Born reciprocity $(x, p) \mapsto (p, -x)$ preserves σ_0 , maps $\rho \in \Omega^2(M) \mapsto \beta \in \Omega^2(M^*)$ with twisted Poisson brackets:

$$\{x^{i}, x^{j}\}_{\beta} = -\beta^{ij}(p) \quad , \quad \{x^{i}, p_{j}\}_{\beta} = \delta^{i}{}_{j} \quad , \quad \{p_{i}, p_{j}\}_{\beta} = 0$$

► Twisting by '*R*-flux' *R* = dβ ∈ Ω³(*M**) gives nonassociative configuration space:

$$\{x^i, x^j, x^k\}_{\beta} = -R^{ijk}(p)$$

 R-flux model: Phase space of closed strings propagating in 'locally non-geometric' *R*-flux backgrounds (Blumenhagen & Plauschinn '10; Lüst '10; Blumenhagen, Deser, Lüst, Plauschinn & Rennecke '11; Mylonas, Schupp & Sz '12; Freidel, Leigh & Minic '17; ...)

For d = 3, motion in magnetic field \vec{B} (with or without sources) governed by Lorentz force

$$\dot{\vec{p}} = rac{e}{m}\vec{p} imes \vec{B}$$
 , $\vec{p} = m\dot{\vec{x}}$

Hamiltonian equations $\dot{X}^{\prime} = \{X^{\prime}, \mathcal{H}\}_{\rho}$ for $\mathcal{H} = \frac{1}{2m} \vec{p}^{2}$

For d = 3, motion in magnetic field \vec{B} (with or without sources) governed by Lorentz force

$$\dot{\vec{p}} = rac{e}{m}\vec{p} imes \vec{B}$$
 , $\vec{p} = m\dot{\vec{x}}$

Hamiltonian equations $\dot{X}^{\prime} = \{X^{\prime}, \mathcal{H}\}_{\rho}$ for $\mathcal{H} = \frac{1}{2m}\vec{p}^{2}$

• \vec{B} = constant:

Motion follows helical trajectory with uniform velocity along $\vec{B}\text{-direction}$

For d = 3, motion in magnetic field \vec{B} (with or without sources) governed by Lorentz force

$$\dot{\vec{p}} = rac{e}{m}\vec{p} imes \vec{B}$$
 , $\vec{p} = m\dot{\vec{x}}$

Hamiltonian equations $\dot{X}^{I} = \{X^{I}, \mathcal{H}\}_{\rho}$ for $\mathcal{H} = \frac{1}{2m} \vec{p}^{2}$

• \vec{B} = constant:

Motion follows helical trajectory with uniform velocity along $\vec{B}\text{-direction}$

• Dirac monopole field $\vec{B} = \vec{B}_{\rm D}$: (Bakas & Lüst '13)

Conservation of Poincaré vector \vec{K} confines motion to surface of cone, electric charge never reaches magnetic monopole and nonassociativity plays no role

• $\vec{B} = (0, 0, Hz)$, constant magnetic charge H: (Kupriyanov & Sz '18)

Motion follows Euler spiral with uniform velocity along *z*-direction

• $\vec{B} = (0, 0, Hz)$, constant magnetic charge H: (Kupriyanov & Sz '18)

Motion follows Euler spiral with uniform velocity along *z*-direction

► $\vec{B} = \frac{1}{3} H \vec{x}$, constant magnetic charge H: Motion is no longer integrable or confined, equivalent to motion in Dirac monopole field $\vec{B}_{\rm D}$ with additional frictional forces (Bakas & Lüst '13)

• $\vec{B} = (0, 0, Hz)$, constant magnetic charge H: (Kupriyanov & Sz '18)

Motion follows Euler spiral with uniform velocity along *z*-direction

► $\vec{B} = \frac{1}{3} H \vec{x}$, constant magnetic charge H: Motion is no longer integrable or confined, equivalent to motion in Dirac monopole field $\vec{B}_{\rm D}$ with additional frictional forces (Bakas & Lüst '13)

Questions:

- What substitutes for canonical quantization of locally non-geometric closed strings?
- Is there a sensible nonassociative quantum mechanics?

• Quantization Linear map $f \mapsto \mathcal{O}_f$ for $f \in C^{\infty}(\mathcal{M})$:

$$[\mathcal{O}_f, \mathcal{O}_g] = \mathrm{i}\,\hbar\,\mathcal{O}_{\{f,g\}_\rho} + O(\hbar^2)$$

 $[\mathcal{O}_{x^{i}},\mathcal{O}_{x^{j}}] = 0 \quad , \quad [\mathcal{O}_{x^{i}},\mathcal{O}_{p_{j}}] = i\hbar\delta^{i}{}_{j}\mathbb{1} \quad , \quad [\mathcal{O}_{p_{i}},\mathcal{O}_{p_{j}}] = -i\hbar\rho_{ij}(\mathcal{O}_{x})$

• Quantization Linear map $f \mapsto \mathcal{O}_f$ for $f \in C^{\infty}(\mathcal{M})$:

$$[\mathcal{O}_f, \mathcal{O}_g] = \mathrm{i}\,\hbar\,\mathcal{O}_{\{f,g\}_\rho} + O(\hbar^2)$$

 $[\mathcal{O}_{x^{i}},\mathcal{O}_{x^{j}}] = 0 \quad , \quad [\mathcal{O}_{x^{i}},\mathcal{O}_{p_{j}}] = \mathrm{i}\,\hbar\,\delta^{i}{}_{j}\,\mathbb{1} \quad , \quad [\mathcal{O}_{p_{i}},\mathcal{O}_{p_{j}}] = -\,\mathrm{i}\,\hbar\,\rho_{ij}(\mathcal{O}_{x})$

• Magnetic translation operators $\mathcal{P}_{\nu} = \exp\left(\frac{i}{\hbar} \mathcal{O}_{p \cdot \nu}\right)$:

$$\mathcal{P}_{\mathsf{v}}^{-1}\,\mathcal{O}_{\mathsf{x}^i}\,\mathcal{P}_{\mathsf{v}}=\mathcal{O}_{\mathsf{x}^i+\mathsf{v}^i}$$

• Quantization Linear map $f \mapsto \mathcal{O}_f$ for $f \in C^{\infty}(\mathcal{M})$:

$$[\mathcal{O}_f, \mathcal{O}_g] = \mathrm{i}\,\hbar\,\mathcal{O}_{\{f,g\}_\rho} + O(\hbar^2)$$

 $[\mathcal{O}_{x^{i}},\mathcal{O}_{x^{j}}] = 0 \quad , \quad [\mathcal{O}_{x^{i}},\mathcal{O}_{p_{j}}] = \mathrm{i}\,\hbar\,\delta^{i}{}_{j}\,\mathbb{1} \quad , \quad [\mathcal{O}_{p_{i}},\mathcal{O}_{p_{j}}] = -\,\mathrm{i}\,\hbar\,\rho_{ij}(\mathcal{O}_{x})$

• Magnetic translation operators $\mathcal{P}_{\mathbf{v}} = \exp\left(\frac{\mathrm{i}}{\hbar} \mathcal{O}_{\mathbf{p} \cdot \mathbf{v}}\right)$:

$$\mathcal{P}_{\mathsf{v}}^{-1} \mathcal{O}_{x^i} \mathcal{P}_{\mathsf{v}} = \mathcal{O}_{x^i + \mathsf{v}^i}$$

• Representation of translation group \mathbb{R}^d ? (Jackiw '85)

 $\mathcal{P}_{w} \mathcal{P}_{v} = e^{i \Phi_{2}(x;v,w)} \mathcal{P}_{v+w} , \quad \mathcal{P}_{w} \left(\mathcal{P}_{v} \mathcal{P}_{u} \right) = e^{i \Phi_{3}(x;u,v,w)} \left(\mathcal{P}_{w} \mathcal{P}_{v} \right) \mathcal{P}_{u}$

▶ $\rho = dA = F_{\nabla^L}$ is curvature of a (trivial) line bundle $L \longrightarrow M = \mathbb{R}^d$

 ρ = dA = F_{∇^L} is curvature of a (trivial) line bundle L → M = ℝ^d
 O_x = x , O_p = -iħ∇^L = -iħd + A Represented on quantum Hilbert space H = L²(M, L) = L²(M)

ρ = dA = F_{∇^L} is curvature of a (trivial) line bundle L → M = ℝ^d
O_x = x , O_p = -iħ∇^L = -iħd + A Represented on quantum Hilbert space H = L²(M, L) = L²(M)
Magnetic translations given by parallel transport in L (Wilson lines):

 ρ = dA = F_{∇^L} is curvature of a (trivial) line bundle L → M = ℝ^d
 O_x = x , O_p = -iħ∇^L = -iħd + A Represented on quantum Hilbert space H = L²(M, L) = L²(M)
 Magnetic translations given by parallel transport in L (Wilson lines):
 ^x/_A (P_vψ)(x) = exp(-iħ ∫_{Δ¹(x;v)} A)ψ(x - v)

Defines weak projective representation of translation group R^d on H:

$$(\mathcal{P}_w \, \mathcal{P}_v \psi)(x) = \omega_{v,w}(x) \, (\mathcal{P}_{v+w} \psi)(x)$$

 $\omega_{v,w}(x) = \exp\left(-\frac{\mathrm{i}}{\hbar} \, \int_{\bigtriangleup^2(x;w,v)} \rho\right)$

ρ = dA = F_{∇^L} is curvature of a (trivial) line bundle L → M = ℝ^d
O_x = x , O_p = -iħ∇^L = -iħd + A Represented on quantum Hilbert space H = L²(M, L) = L²(M)
Magnetic translations given by parallel transport in L (Wilson lines):
^v_A
(P_vψ)(x) = exp(-iħ ∫_{Δ¹(x;v)} A)ψ(x - v)

Defines weak projective representation of translation group R^d on H:

$$(\mathcal{P}_{w} \mathcal{P}_{v} \psi)(x) = \omega_{v,w}(x) \ (\mathcal{P}_{v+w} \psi)(x)$$
$$\omega_{v,w}(x) = \exp\left(-\frac{\mathrm{i}}{\hbar} \int_{\triangle^{2}(x;w,v)} \rho\right) \qquad \left(= \mathrm{e}^{-\frac{\mathrm{i}}{2\hbar} \rho(v,w)} \text{ for } \rho \text{ constant}\right)$$

 ρ = dA = F_{∇^L} is curvature of a (trivial) line bundle L → M = ℝ^d
 O_x = x , O_p = -iħ∇^L = -iħd + A Represented on quantum Hilbert space H = L²(M, L) = L²(M)
 Magnetic translations given by parallel transport in L (Wilson lines):
 ^x/_A (P_vψ)(x) = exp (-iħ ∫_{Δ¹(x;v)} A) ψ(x - v)

Defines weak projective representation of translation group R^d on H:

$$(\mathcal{P}_{w} \mathcal{P}_{v} \psi)(x) = \omega_{v,w}(x) \ (\mathcal{P}_{v+w} \psi)(x)$$
$$\omega_{v,w}(x) = \exp\left(-\frac{\mathrm{i}}{\hbar} \ \int_{\triangle^{2}(x;w,v)} \rho\right) \qquad \left(= \ \mathrm{e}^{-\frac{\mathrm{i}}{2\hbar} \ \rho(v,w)} \text{ for } \rho \text{ constant}\right)$$
$$\blacktriangleright \ \omega_{v,w}(x-u) \ \omega_{u+v,w}^{-1}(x) \ \omega_{u,v+w}(x) \ \omega_{v,w}^{-1}(x) = 1$$
2-cocycle on \mathbb{R}^{d} with values in $C^{\infty}(M, U(1))$

▶ Magnetic Weyl transform $f \in C^{\infty}(\mathcal{M}) \mapsto \mathcal{O}_f \in End(\mathcal{H})$:

$$\begin{split} W(x,p) &: \mathcal{H} \longrightarrow \mathcal{H} \quad , \quad \left(W(x,p)\psi \right)(y) = \, \mathrm{e}^{\frac{\mathrm{i}\,\hbar}{2}\,p\cdot x} \, \mathrm{e}^{-\,\mathrm{i}\,p\cdot y} \, (\mathcal{P}_x\psi)(y) \\ \mathcal{O}_f &= \int_{\mathcal{M}} \, \left(\, \int_{\mathcal{M}} \, \mathrm{e}^{\,\mathrm{i}\,\sigma_0(X,Y)} \, f(Y) \, \frac{\mathrm{d}Y}{(2\pi)^d} \right) W(X) \, \frac{\mathrm{d}X}{(2\pi)^d} \end{split}$$

▶ Magnetic Weyl transform $f \in C^{\infty}(\mathcal{M}) \mapsto \mathcal{O}_f \in End(\mathcal{H})$:

$$\begin{split} W(x,p) &: \mathcal{H} \longrightarrow \mathcal{H} \quad , \quad \left(W(x,p)\psi \right)(y) = \, \mathrm{e}^{\frac{\mathrm{i}\,\hbar}{2}\,p\cdot x} \, \mathrm{e}^{-\,\mathrm{i}\,p\cdot y} \, (\mathcal{P}_x\psi)(y) \\ \mathcal{O}_f &= \int_{\mathcal{M}} \, \left(\, \int_{\mathcal{M}} \, \mathrm{e}^{\,\mathrm{i}\,\sigma_0(X,Y)} \, f(Y) \, \frac{\mathrm{d}Y}{(2\pi)^d} \right) W(X) \, \frac{\mathrm{d}X}{(2\pi)^d} \end{split}$$

▶ Magnetic Moyal–Weyl star product $\mathcal{O}_{f\star_{\rho}g} = \mathcal{O}_f \mathcal{O}_g$:

$$(f\star_{\rho}g)(X) = \frac{1}{(\pi\hbar)^d} \int_{\mathcal{M}} \int_{\mathcal{M}} e^{-\frac{2i}{\hbar} \sigma_0(Y,Z)} \omega_{x+y-z,x-y+z}(x-y-z) f(X-Y) g(X-Z) \, \mathrm{d}Y \, \mathrm{d}Z$$

▶ Magnetic Weyl transform $f \in C^{\infty}(\mathcal{M}) \mapsto \mathcal{O}_f \in End(\mathcal{H})$:

$$\begin{split} W(x,p) &: \mathcal{H} \longrightarrow \mathcal{H} \quad , \quad \left(W(x,p)\psi \right)(y) = \, \mathrm{e}^{\frac{\mathrm{i}\,\hbar}{2}\,p\cdot x} \, \mathrm{e}^{-\,\mathrm{i}\,p\cdot y} \, (\mathcal{P}_x\psi)(y) \\ \mathcal{O}_f &= \int_{\mathcal{M}} \, \left(\, \int_{\mathcal{M}} \, \mathrm{e}^{\,\mathrm{i}\,\sigma_0(X,Y)} \, f(Y) \, \frac{\mathrm{d}Y}{(2\pi)^d} \right) W(X) \, \frac{\mathrm{d}X}{(2\pi)^d} \end{split}$$

► Magnetic Moyal–Weyl star product $\mathcal{O}_{f\star_{\rho}g} = \mathcal{O}_{f}\mathcal{O}_{g}$:

$$(f\star_{\rho}g)(X) = \frac{1}{(\pi\hbar)^{d}} \int_{\mathcal{M}} \int_{\mathcal{M}} e^{-\frac{2i}{\hbar} \sigma_{0}(Y,Z)} \omega_{x+y-z,x-y+z}(x-y-z) f(X-Y) g(X-Z) \, \mathrm{d}Y \, \mathrm{d}Z$$
$$\left(= \frac{1}{(\pi\hbar)^{d}} \int_{\mathcal{M}} \int_{\mathcal{M}} e^{-\frac{2i}{\hbar} \sigma_{\rho}(Y,Z)} f(X-Y) g(X-Z) \, \mathrm{d}Y \, \mathrm{d}Z \quad \text{for } \rho \text{ constant} \right)$$

▶ Magnetic Weyl transform $f \in C^{\infty}(\mathcal{M}) \mapsto \mathcal{O}_f \in \text{End}(\mathcal{H})$:

$$\begin{split} W(x,p) &: \mathcal{H} \longrightarrow \mathcal{H} \quad , \quad \left(W(x,p)\psi \right)(y) = \, \mathrm{e}^{\frac{\mathrm{i}\,\hbar}{2}\,p\cdot x} \, \mathrm{e}^{-\,\mathrm{i}\,p\cdot y} \, (\mathcal{P}_x\psi)(y) \\ \mathcal{O}_f &= \int_{\mathcal{M}} \, \left(\, \int_{\mathcal{M}} \, \mathrm{e}^{\,\mathrm{i}\,\sigma_0(X,Y)} \, f(Y) \, \frac{\mathrm{d}Y}{(2\pi)^d} \right) W(X) \, \frac{\mathrm{d}X}{(2\pi)^d} \end{split}$$

• Magnetic Moyal–Weyl star product $\mathcal{O}_{f\star_{\rho}g} = \mathcal{O}_f \mathcal{O}_g$:

$$(f\star_{\rho}g)(X) = \frac{1}{(\pi\hbar)^d} \int_{\mathcal{M}} \int_{\mathcal{M}} e^{-\frac{2i}{\hbar}\sigma_0(Y,Z)} \omega_{x+y-z,x-y+z}(x-y-z) f(X-Y) g(X-Z) dY dZ$$
$$\left(= \frac{1}{(\pi\hbar)^d} \int_{\mathcal{M}} \int_{\mathcal{M}} e^{-\frac{2i}{\hbar}\sigma_\rho(Y,Z)} f(X-Y) g(X-Z) dY dZ \text{ for } \rho \text{ constant} \right)$$

- Geometric quantization (canonical quantum mechanics)
 deformation quantization (phase space quantum mechanics):
 - Observables/states: (real) functions on phase space
 - Operator product: star product , Traces: integration
 - State function (density matrix): $S \geqslant 0$, $\int_{\mathcal{M}} S = 1$
 - Expectation values: $\langle \mathcal{O} \rangle = \int_{\mathcal{M}} \mathcal{O} \star_{\rho} S \dots$

Quantization with $H = d\rho \neq 0$

 Operator/state formulation of canonical quantization (geometric quantization) cannot handle nonassociative magnetic Poisson algebras

Quantization with $H = d\rho \neq 0$

- Operator/state formulation of canonical quantization (geometric quantization) cannot handle nonassociative magnetic Poisson algebras
- For Dirac monopole $\vec{B}_{\rm D} = g \vec{x}/|\vec{x}|^3$:
 - Magnetic Poisson algebra is associative on $M^{\circ} = \mathbb{R}^3 \setminus \{0\},\ \rho = dA_D$ locally
 - ▶ Quantum Hilbert space is $\mathcal{H} = L^2(M^\circ, L)$ for a non-trivial line bundle $L \longrightarrow M^\circ$ iff Dirac charge quantization: $\frac{2 eg}{\hbar} \in \mathbb{Z}$ (Wu & Yang '76)
 - ► Magnetic Weyl transform on *M*[°] induces associative phase space star product (Soloviev '17)

Quantization with $H = d\rho \neq 0$

- Operator/state formulation of canonical quantization (geometric quantization) cannot handle nonassociative magnetic Poisson algebras
- For Dirac monopole $\vec{B}_{\rm D} = g \vec{x}/|\vec{x}|^3$:
 - Magnetic Poisson algebra is associative on $M^{\circ} = \mathbb{R}^3 \setminus \{0\}$, $\rho = dA_D$ locally
 - ▶ Quantum Hilbert space is $\mathcal{H} = L^2(M^\circ, L)$ for a non-trivial line bundle $L \longrightarrow M^\circ$ iff Dirac charge quantization: $\frac{2 eg}{\hbar} \in \mathbb{Z}$ (Wu & Yang '76)
 - ► Magnetic Weyl transform on *M*[°] induces associative phase space star product (Soloviev '17)
- For generic smooth distributions H ∈ Ω³(M), standard geometric quantization breaks down

For any H = dρ ∈ Ω³(M), Kontsevich formality provides noncommutative and nonassociative star product on C[∞](M)[[ħ]]:

$$f \star_{H} g = f g + \frac{i\hbar}{2} \{f, g\}_{\rho} + \sum_{n \ge 2} \frac{(i\hbar)^{n}}{n!} \mathfrak{b}_{n}(f, g)$$

$$[f, g, h]_{\star_{H}} = -\hbar^{2} \{f, g, h\}_{\rho} + \sum_{n \ge 3} \frac{(i\hbar)^{n}}{n!} \mathfrak{t}_{n}(f, g, h)$$

$$\underbrace{ \overset{\cdots}{f}}_{f = g} \underbrace{ \begin{array}{c} \vdots \\ f \\ g \\ h \end{array}}_{h}$$
where $\mathfrak{b}_{n} = U_{n}(\theta_{\rho}, \dots, \theta_{\rho})$ and $\mathfrak{t}_{n} = U_{n+1}([\theta_{\rho}, \theta_{\rho}]_{\mathbb{S}}, \theta_{\rho}, \dots, \theta_{\rho})$

where $b_n = U_n(\theta_\rho, \dots, \theta_\rho)$ and $t_n = U_{n+1}([\theta_\rho, \theta_\rho]_S, \theta_\rho, \dots, \theta_\rho)$ are bi-/tri-differential operators (Mylonas, Schupp & Sz '12)

For any H = dρ ∈ Ω³(M), Kontsevich formality provides noncommutative and nonassociative star product on C[∞](M)[[ħ]]:

$$f \star_H g = f g + \frac{\mathrm{i}\hbar}{2} \{f,g\}_\rho + \sum_{n \ge 2} \frac{(\mathrm{i}\hbar)^n}{n!} b_n(f,g)$$

$$[f,g,h]_{\star_{H}} = -\hbar^{2} \{f,g,h\}_{\rho} + \sum_{n \ge 3} \frac{(\mathrm{i}\hbar)^{n}}{n!} \operatorname{t}_{n}(f,g,h)$$

where $b_n = U_n(\theta_\rho, \dots, \theta_\rho)$ and $t_n = U_{n+1}([\theta_\rho, \theta_\rho]_S, \theta_\rho, \dots, \theta_\rho)$ are bi-/tri-differential operators (Mylonas, Schupp & Sz '12)

• For *H* constant,
$$\rho_{ij}(x) = \frac{1}{3} H_{ijk} x^k$$
:

$$(f\star_{H}g)(X) = \frac{1}{(\pi \hbar)^{d}} \int_{\mathcal{M}} \int_{\mathcal{M}} e^{-\frac{2i}{\hbar} \sigma_{\rho}(Y,Z)} f(X-Y) g(X-Z) \, \mathrm{d}Y \, \mathrm{d}Z$$

► Nonassociative magnetic translations $\mathcal{P}_{v} := e^{\frac{i}{\hbar} p \cdot v}$ give 3-cocycle: $\mathcal{P}_{v} \star_{H} \mathcal{P}_{w} = \Pi_{v,w}(x) \mathcal{P}_{v+w}$ $(\mathcal{P}_{u} \star_{H} \mathcal{P}_{v}) \star_{H} \mathcal{P}_{w} = \omega_{u,v,w}(x) \mathcal{P}_{u} \star_{H} (\mathcal{P}_{v} \star_{H} \mathcal{P}_{w})$ where $\Pi_{v,w}(x) = e^{-\frac{i}{6\hbar} H(x,v,w)}$ and $\omega_{u,v,w}(x) = e^{\frac{i}{6\hbar} H(u,v,w)}$

 Nonassociative magnetic translations P_v := e^{i/h P·v} give 3-cocycle: P_v ★_H P_w = Π_{v,w}(x) P_{v+w}
 (P_u ★_H P_v) ★_H P_w = ω_{u,v,w}(x) P_u ★_H (P_v ★_H P_w)
 where Π_{v,w}(x) = e^{-i/6h H(x,v,w)} and ω_{u,v,w}(x) = e^{i/6h H(u,v,w)}

 Phase space formulation of nonassociative quantum mechanics is

Phase space formulation of nonassociative quantum mechanics is physically sensible and gives novel quantitative predictions (Mylonas, Schupp & Sz '13)

 Nonassociative magnetic translations P_v := e^{i/h p·v} give 3-cocycle: P_v ★_H P_w = Π_{v,w}(x) P_{v+w}
 (P_u ★_H P_v) ★_H P_w = ω_{u,v,w}(x) P_u ★_H (P_v ★_H P_w)
 where Π_{v,w}(x) = e^{-i/6h H(x,v,w)} and ω_{u,v,w}(x) = e^{i/6h H(u,v,w)}

 Phase space formulation of nonassociative quantum mechanics is

physically sensible and gives novel quantitative predictions (Mylonas, Schupp & Sz '13)

► *R*-flux model: Expectation values of oriented volume uncertainty operators $V^{ijk} = \langle \frac{1}{2} [\Delta x^i, \Delta x^j, \Delta x^k]_{\star_H} \rangle$ give quantum of volume $V^{ijk} = \frac{1}{2} \hbar^2 R^{ijk}$

For d = 3, no D0-branes in locally non-geometric string backgrounds

 Nonassociative magnetic translations P_v := e^{i/h p·v} give 3-cocycle: P_v ★_H P_w = Π_{v,w}(x) P_{v+w}
 (P_u ★_H P_v) ★_H P_w = ω_{u,v,w}(x) P_u ★_H (P_v ★_H P_w)
 where Π_{v,w}(x) = e^{-i/6h H(x,v,w)} and ω_{u,v,w}(x) = e^{i/6h H(u,v,w)}

 Phase space formulation of nonassociative quantum mechanics is

physically sensible and gives novel quantitative predictions (Mylonas, Schupp & Sz '13)

► *R*-flux model: Expectation values of oriented volume uncertainty operators $V^{ijk} = \langle \frac{1}{2} [\Delta x^i, \Delta x^j, \Delta x^k]_{\star_H} \rangle$ give quantum of volume $V^{ijk} = \frac{1}{2} \hbar^2 R^{ijk}$

For d = 3, no D0-branes in locally non-geometric string backgrounds

▶ **Problems:** Quantization formal in ħ for non-constant *H*, issues with dynamics, ...

• Symplectic realization of a Poisson structure θ on M: Symplectic manifold (S, Ω) with surjective submersion $S \longrightarrow M$ which is a Poisson map (Weinstein '83; Karasev '87;

Coste, Dazord & Weinstein '87; Cattaneo & Xu '04)

• Symplectic realization of a Poisson structure θ on M: Symplectic manifold (S, Ω) with surjective submersion $S \longrightarrow M$ which is a Poisson map (Weinstein '83; Karasev '87;

Coste, Dazord & Weinstein '87; Cattaneo & Xu '04)

► Local symplectic realization of magnetic Poisson structure "doubles" \mathcal{M} to extended phase space $(x^i, \tilde{x}^i, p_i, \tilde{p}_i)$ using local Darboux coordinates (x^i, π_i) and $(\tilde{x}^i, \tilde{\pi}_i)$ with generalized Bopp shifts $p_i = \pi_i - \frac{1}{2}\rho_{ij}(x)\tilde{x}^j$, $\tilde{p}_i = \tilde{\pi}_i$: (Kupriyanov & Sz '18)

• Symplectic realization of a Poisson structure θ on M: Symplectic manifold (S, Ω) with surjective submersion $S \longrightarrow M$ which is a Poisson map (Weinstein '83; Karasev '87;

Coste, Dazord & Weinstein '87; Cattaneo & Xu '04)

► Local symplectic realization of magnetic Poisson structure "doubles" \mathcal{M} to extended phase space $(x^i, \tilde{x}^i, p_i, \tilde{p}_i)$ using local Darboux coordinates (x^i, π_i) and $(\tilde{x}^i, \tilde{\pi}_i)$ with generalized Bopp shifts $p_i = \pi_i - \frac{1}{2}\rho_{ij}(x)\tilde{x}^j$, $\tilde{p}_i = \tilde{\pi}_i$: (Kupriyanov & Sz '18) $\{x^i, p_j\} = \{\tilde{x}^i, p_j\} = \{x^i, \tilde{p}_j\} = \delta^i_j$ $\{p_i, p_j\} = \rho_{ij}(x) + \frac{1}{2}\tilde{x}^k(\partial_k \rho_{ij}(x) - H_{ijk}(x))$ $\{p_i, \tilde{p}_i\} = \{\tilde{p}_i, p_j\} = \frac{1}{2}\rho_{ij}(x)$

• Symplectic realization of a Poisson structure θ on M: Symplectic manifold (S, Ω) with surjective submersion $S \longrightarrow M$ which is a Poisson map (Weinstein '83; Karasev '87;

Coste, Dazord & Weinstein '87; Cattaneo & Xu '04)

- ► Local symplectic realization of magnetic Poisson structure "doubles" \mathcal{M} to extended phase space $(x^i, \tilde{x}^i, p_i, \tilde{p}_i)$ using local Darboux coordinates (x^i, π_i) and $(\tilde{x}^i, \tilde{\pi}_i)$ with generalized Bopp shifts $p_i = \pi_i - \frac{1}{2}\rho_{ij}(x)\tilde{x}^j$, $\tilde{p}_i = \tilde{\pi}_i$: (Kupriyanov & Sz '18) $\{x^i, p_j\} = \{\tilde{x}^i, p_j\} = \{x^i, \tilde{p}_j\} = \delta^i_j$ $\{p_i, p_j\} = \rho_{ij}(x) + \frac{1}{2}\tilde{x}^k(\partial_k \rho_{ij}(x) - H_{ijk}(x))$ $\{p_i, \tilde{p}_j\} = \{\tilde{p}_i, p_j\} = \frac{1}{2}\rho_{ij}(x)$
- ▶ Quantization on C[∞](M): O_{p̃i} = iħ ∂/∂xⁱ, O_{x̃i} = -iħ ∂/∂p_i coincide with associative composition algebra (Diff(M), ◦_H) of observables in nonassociative quantum mechanics:

$$(f \circ_H g) \star_H \varphi := f \star_H (g \star_H \varphi)$$

• $O(d, d) \times O(d, d)$ -invariant Hamiltonian:

$$\mathcal{H} = \frac{1}{m} p_I \eta^{IJ} p_J \quad , \quad p_I = (p_i, \tilde{p}_i) \quad , \quad \eta = \begin{pmatrix} 0 & \mathbb{1}_d \\ \mathbb{1}_d & 0 \end{pmatrix}$$

For d=3 reproduces Lorentz force $\dot{\vec{p}}~=~\frac{e}{m}\,\vec{p} imes \vec{B}$, $\vec{p}~=~m\dot{\vec{x}}$

• $O(d, d) \times O(d, d)$ -invariant Hamiltonian:

$$\mathcal{H} = \frac{1}{m} p_I \eta^{IJ} p_J \quad , \quad p_I = (p_i, \tilde{p}_i) \quad , \quad \eta = \begin{pmatrix} 0 & \mathbb{1}_d \\ \mathbb{1}_d & 0 \end{pmatrix}$$

For d=3 reproduces Lorentz force $\dot{\vec{p}}=\frac{e}{m}\vec{p} imes \vec{B}$, $\vec{p}=m\dot{\vec{x}}$

 Consistent Hamiltonian reduction eliminates auxiliary coordinates iff *H* = 0: No polarisation of extended symplectic algebra consistent with Lorentz force and nonassociative magnetic Poisson algebra

• $O(d, d) \times O(d, d)$ -invariant Hamiltonian:

$$\mathcal{H} = \frac{1}{m} p_I \eta^{IJ} p_J \quad , \quad p_I = (p_i, \tilde{p}_i) \quad , \quad \eta = \begin{pmatrix} 0 & \mathbb{1}_d \\ \mathbb{1}_d & 0 \end{pmatrix}$$

For d=3 reproduces Lorentz force $\dot{\vec{p}} = \frac{e}{m}\vec{p}\times\vec{B}$, $\vec{p} = m\dot{\vec{x}}$

- Consistent Hamiltonian reduction eliminates auxiliary coordinates iff *H* = 0: No polarisation of extended symplectic algebra consistent with Lorentz force and nonassociative magnetic Poisson algebra
- ► Dynamics: For *H* constant, equivalent to motion in Dirac monopole field *B*_D with additional frictional forces Extra degrees of freedom represent reservoir?

• $O(d, d) \times O(d, d)$ -invariant Hamiltonian:

$$\mathcal{H} = \frac{1}{m} p_I \eta^{IJ} p_J \quad , \quad p_I = (p_i, \tilde{p}_i) \quad , \quad \eta = \begin{pmatrix} 0 & \mathbb{1}_d \\ \mathbb{1}_d & 0 \end{pmatrix}$$

For d=3 reproduces Lorentz force $\dot{\vec{p}}=\frac{e}{m}\vec{p}\times\vec{B}$, $\vec{p}=m\dot{\vec{x}}$

- Consistent Hamiltonian reduction eliminates auxiliary coordinates iff *H* = 0: No polarisation of extended symplectic algebra consistent with Lorentz force and nonassociative magnetic Poisson algebra
- ► Dynamics: For *H* constant, equivalent to motion in Dirac monopole field *B*_D with additional frictional forces Extra degrees of freedom represent reservoir?
- Problems: Physical meaning of spurious degrees of freedom,
 3-cocycles for magnetic translations "hidden" in extra variables, ...

• $O(d, d) \times O(d, d)$ -invariant Hamiltonian:

$$\mathcal{H} = \frac{1}{m} p_I \eta^{IJ} p_J \quad , \quad p_I = (p_i, \tilde{p}_i) \quad , \quad \eta = \begin{pmatrix} 0 & \mathbb{1}_d \\ \mathbb{1}_d & 0 \end{pmatrix}$$

For d=3 reproduces Lorentz force $\dot{\vec{p}}=\frac{e}{m}\vec{p}\times\vec{B}$, $\vec{p}=m\dot{\vec{x}}$

- Consistent Hamiltonian reduction eliminates auxiliary coordinates iff *H* = 0: No polarisation of extended symplectic algebra consistent with Lorentz force and nonassociative magnetic Poisson algebra
- Dynamics: For H constant, equivalent to motion in Dirac monopole field B_D with additional frictional forces Extra degrees of freedom represent reservoir?
- Problems: Physical meaning of spurious degrees of freedom,
 3-cocycles for magnetic translations "hidden" in extra variables, ...
- ► Higher structures: Replace Hilbert spaces with 2-Hilbert spaces of sections of a suitable geometric object which encodes H = dρ ≠ 0

► For $\pi: Y \longrightarrow M$ surjective submersion: $Y^{[p]} := Y \times_M \cdots \times_M Y$ forms a simplicial space with face maps $\pi_i: Y^{[p]} \longrightarrow Y^{[p-1]}$

- ► For $\pi: Y \longrightarrow M$ surjective submersion: $Y^{[p]} := Y \times_M \cdots \times_M Y$ forms a simplicial space with face maps $\pi_i: Y^{[p]} \longrightarrow Y^{[p-1]}$
- $(Y^{[2]} \rightrightarrows Y) =$ pair groupoid with source/target maps π_2/π_1 , orbit space M

- ► For $\pi: Y \longrightarrow M$ surjective submersion: $Y^{[p]} := Y \times_M \cdots \times_M Y$ forms a simplicial space with face maps $\pi_i: Y^{[p]} \longrightarrow Y^{[p-1]}$
- $(Y^{[2]} \rightrightarrows Y) =$ pair groupoid with source/target maps π_2/π_1 , orbit space M
- Bundle gerbe (L, Y) = groupoid central extension: (Murray '96)

$$\begin{array}{c}
L \\
\mathbb{C} \\
Y^{[2]} \xrightarrow{\pi_2} \\
\pi_1 \\
\downarrow \\
M
\end{array}$$

► For $\pi: Y \longrightarrow M$ surjective submersion: $Y^{[p]} := Y \times_M \cdots \times_M Y$ forms a simplicial space with face maps $\pi_i: Y^{[p]} \longrightarrow Y^{[p-1]}$

- $(Y^{[2]} \rightrightarrows Y) =$ pair groupoid with source/target maps π_2/π_1 , orbit space M
- Bundle gerbe (L, Y) = groupoid central extension: (Murray '96)

• Groupoid multiplication gives bundle gerbe multiplication $\mu : \pi_3^*(L) \otimes \pi_1^*(L) \xrightarrow{\simeq} \pi_2^*(L)$ over $Y^{[3]}$, associative over $Y^{[4]}$

► For $\pi: Y \longrightarrow M$ surjective submersion: $Y^{[p]} := Y \times_M \cdots \times_M Y$ forms a simplicial space with face maps $\pi_i: Y^{[p]} \longrightarrow Y^{[p-1]}$

- $(Y^{[2]} \rightrightarrows Y) =$ pair groupoid with source/target maps π_2/π_1 , orbit space M
- Bundle gerbe (L, Y) = groupoid central extension:

(Murray '96)

- Groupoid multiplication gives bundle gerbe multiplication $\mu : \pi_3^*(L) \otimes \pi_1^*(L) \xrightarrow{\simeq} \pi_2^*(L)$ over $Y^{[3]}$, associative over $Y^{[4]}$
- Connection: $\rho \in \Omega^2(Y)$ satisfying $\pi_2^*(\rho) \pi_1^*(\rho) = F_{\nabla^L}$, curvature is $\pi^* H = d\rho$, $H \in \Omega^3(M)$

Sections of Bundle Gerbes

▶ Bundle gerbes G = (L, Y) ⇒ M are objects in a symmetric monoidal 2-category (Waldorf '07; Bunk, Sämann & Sz '16)

Sections of Bundle Gerbes

- ▶ Bundle gerbes G = (L, Y) ⇒ M are objects in a symmetric monoidal 2-category (Waldorf '07; Bunk, Sämann & Sz '16)
- 2-Hilbert space of sections Γ(M, G): Hilb-module category of morphisms I₀ → G from trivial bundle gerbe I₀ with:
 - Rig module category structure over rig category HVbdl(M)
 - ► Inner product bifunctor $\langle , \rangle : \Gamma(M, \mathcal{G})^{\mathrm{op}} \times \Gamma(M, \mathcal{G}) \longrightarrow \mathsf{Hilb}$

Sections of Bundle Gerbes

- ▶ Bundle gerbes G = (L, Y) ⇒ M are objects in a symmetric monoidal 2-category (Waldorf '07; Bunk, Sämann & Sz '16)
- ► 2-Hilbert space of sections Γ(M, G): Hilb-module category of morphisms I₀ → G from trivial bundle gerbe I₀ with:
 - Rig module category structure over rig category HVbdl(M)
 - ► Inner product bifunctor $\langle , \rangle : \Gamma(M, \mathcal{G})^{\mathrm{op}} \times \Gamma(M, \mathcal{G}) \longrightarrow \mathsf{Hilb}$
- Simple description on $M = \mathbb{R}^d$ for trivial bundle gerbes $\mathcal{G} = \mathcal{I}_{\rho}$:

- Objects are vector bundles with connection: $\eta \in \Omega^1(M, u(n))$
- Morphisms are parallel morphisms: $f : \eta \longrightarrow \eta'$ is a function $f : M \longrightarrow Mat(n \times n')$ satisfying $i \eta' f = i f \eta df$

► Parallel transport functor $\mathcal{P}_{v} : \Gamma(M, \mathcal{I}_{\rho}) \longrightarrow \Gamma(M, \mathcal{I}_{\rho})$: (Bunk, Müller & Sz '18)

$$\mathcal{P}_{\nu}(\eta)|_{x}(a) = \eta|_{x-\nu}(a) + \frac{1}{\hbar} \int_{\bigtriangleup^{1}(x;\nu)} \iota_{a}\rho \quad , \quad \mathcal{P}_{\nu}(f)(x) = f(x-\nu)$$

Weak module functor: $\mathcal{P}_{\nu}(\xi \otimes \eta) = \nu^{*}(\xi) \otimes \mathcal{P}_{\nu}(\eta), \ \xi \in \Omega^{1}(M, u(k))$

► Parallel transport functor $\mathcal{P}_{v} : \Gamma(M, \mathcal{I}_{\rho}) \longrightarrow \Gamma(M, \mathcal{I}_{\rho})$: (Bunk, Müller & Sz '18)

$$\mathcal{P}_{\nu}(\eta)|_{x}(a) = \eta|_{x-\nu}(a) + \frac{1}{\hbar} \int_{\bigtriangleup^{1}(x;\nu)} \iota_{a}\rho \quad , \quad \mathcal{P}_{\nu}(f)(x) = f(x-\nu)$$

Weak module functor: $\mathcal{P}_{\nu}(\xi \otimes \eta) = \nu^*(\xi) \otimes \mathcal{P}_{\nu}(\eta), \ \xi \in \Omega^1(M, u(k))$

• Coherence isomorphisms $\Pi_{v,w} : \mathcal{P}_v \circ \mathcal{P}_w \Longrightarrow \chi_{v,w} \otimes \mathcal{P}_{v+w}$:

 $\chi_{v,w}|_{x}(a) = \frac{1}{\hbar} \int_{\triangle^{2}(x;w,v)} \iota_{a} H \quad \text{(connection 1-form of trivial line bundle on } M\text{)}$ $\Pi_{v,w|\eta}(x) := \exp\left(-\frac{\mathrm{i}}{\hbar} \int_{\triangle^{2}(x;w,v)} \rho\right)$

► Parallel transport functor $\mathcal{P}_{v}: \Gamma(M, \mathcal{I}_{\rho}) \longrightarrow \Gamma(M, \mathcal{I}_{\rho}):$ (Bunk, Müller & Sz '18)

$$\mathcal{P}_{\nu}(\eta)|_{x}(a) = \eta|_{x-\nu}(a) + \frac{1}{\hbar} \int_{\bigtriangleup^{1}(x;\nu)} \iota_{a}\rho \quad , \quad \mathcal{P}_{\nu}(f)(x) = f(x-\nu)$$

Weak module functor: $\mathcal{P}_{v}(\xi \otimes \eta) = v^{*}(\xi) \otimes \mathcal{P}_{v}(\eta), \ \xi \in \Omega^{1}(M, u(k))$

• Coherence isomorphisms $\Pi_{v,w} : \mathcal{P}_v \circ \mathcal{P}_w \Longrightarrow \chi_{v,w} \otimes \mathcal{P}_{v+w}$:

 $\chi_{v,w}|_{x}(a) = \frac{1}{\hbar} \int_{\Delta^{2}(x;w,v)} \iota_{a} H \quad \text{(connection 1-form of trivial line bundle on } M\text{)}$ $\Pi_{v,w|\eta}(x) := \exp\left(-\frac{\mathrm{i}}{\hbar} \int_{\Delta^{2}(x;w,v)} \rho\right) \quad \left(=\mathrm{e}^{-\frac{\mathrm{i}}{6\hbar} H(x,v,w)} \text{ for } H \text{ constant}\right)$

► Parallel transport functor $\mathcal{P}_{v}: \Gamma(M, \mathcal{I}_{\rho}) \longrightarrow \Gamma(M, \mathcal{I}_{\rho}):$ (Bunk, Müller & Sz '18)

$$\mathcal{P}_{\nu}(\eta)|_{x}(a) = \eta|_{x-\nu}(a) + \frac{1}{\hbar} \int_{\bigtriangleup^{1}(x;\nu)} \iota_{a}\rho \quad , \quad \mathcal{P}_{\nu}(f)(x) = f(x-\nu)$$

Weak module functor: $\mathcal{P}_{v}(\xi \otimes \eta) = v^{*}(\xi) \otimes \mathcal{P}_{v}(\eta), \ \xi \in \Omega^{1}(M, u(k))$

• Coherence isomorphisms $\Pi_{v,w} : \mathcal{P}_v \circ \mathcal{P}_w \Longrightarrow \chi_{v,w} \otimes \mathcal{P}_{v+w}$:

 $\chi_{v,w}|_{x}(a) = \frac{1}{\hbar} \int_{\triangle^{2}(x;w,v)} \iota_{a}H \quad \text{(connection 1-form of trivial line bundle on } M\text{)}$

$$\Pi_{v,w|\eta}(x) := \exp\left(-\frac{1}{\hbar} \int_{\triangle^2(x;w,v)} \rho\right) \quad \left(= e^{-\frac{1}{6\hbar} H(x,v,w)} \text{ for } H \text{ constant}\right)$$

• "Nonassociativity" of $\mathcal{P}_u \circ \mathcal{P}_v \circ \mathcal{P}_w$:

$$\Pi_{u+v,w} \circ \Pi_{u,v}(x) = \omega_{u,v,w}(x) \Pi_{u,v+w} \circ \mathcal{P}_u(\Pi_{v,w})(x)$$
$$\omega_{u,v,w} : \chi_{u+v,w} \otimes \chi_{u,v} \longrightarrow \chi_{u,v+w} \otimes u^*(\chi_{v,w})$$
$$\omega_{u,v,w}(x) := \exp\left(\frac{\mathrm{i}}{\hbar} \int_{\bigtriangleup^3(x;w,v,u)} H\right)$$

► Parallel transport functor $\mathcal{P}_{v}: \Gamma(M, \mathcal{I}_{\rho}) \longrightarrow \Gamma(M, \mathcal{I}_{\rho}):$ (Bunk, Müller & Sz '18)

$$\mathcal{P}_{\nu}(\eta)|_{x}(a) = \eta|_{x-\nu}(a) + \frac{1}{\hbar} \int_{\bigtriangleup^{1}(x;\nu)} \iota_{a}\rho \quad , \quad \mathcal{P}_{\nu}(f)(x) = f(x-\nu)$$

Weak module functor: $\mathcal{P}_{v}(\xi \otimes \eta) = v^{*}(\xi) \otimes \mathcal{P}_{v}(\eta), \ \xi \in \Omega^{1}(M, u(k))$

• Coherence isomorphisms $\Pi_{v,w} : \mathcal{P}_v \circ \mathcal{P}_w \Longrightarrow \chi_{v,w} \otimes \mathcal{P}_{v+w}$:

 $\chi_{v,w}|_{x}(a) = \frac{1}{\hbar} \int_{\triangle^{2}(x;w,v)} \iota_{a}H \quad \text{(connection 1-form of trivial line bundle on } M\text{)}$ $\Pi_{v,w|\eta}(x) := \exp\left(-\frac{\mathrm{i}}{\hbar} \int_{\triangle^{2}(x;w,v)} \rho\right) \quad \left(= \mathrm{e}^{-\frac{\mathrm{i}}{6\hbar}H(x,v,w)} \text{ for } H \text{ constant}\right)$

• "Nonassociativity" of $\mathcal{P}_u \circ \mathcal{P}_v \circ \mathcal{P}_w$:

$$\Pi_{u+v,w} \circ \Pi_{u,v}(x) = \omega_{u,v,w}(x) \Pi_{u,v+w} \circ \mathcal{P}_u(\Pi_{v,w})(x)$$
$$\omega_{u,v,w} : \chi_{u+v,w} \otimes \chi_{u,v} \longrightarrow \chi_{u,v+w} \otimes u^*(\chi_{v,w})$$
$$\omega_{u,v,w}(x) := \exp\left(\frac{\mathrm{i}}{\hbar} \int_{\bigtriangleup^3(x;w,v,u)} H\right) \quad \left(=\mathrm{e}^{\frac{\mathrm{i}}{6\hbar} H(u,v,w)} \text{ for } H \text{ constant}\right)$$

• $\omega_{u,v,w}$ define a 3-cocycle on \mathbb{R}^d with values in $C^{\infty}(M, U(1))$

- $\omega_{u,v,w}$ define a 3-cocycle on \mathbb{R}^d with values in $C^{\infty}(M, U(1))$
- (χ_{v,w}, ω_{u,v,w}) define a higher weak 2-cocycle on ℝ^d with values in the Hilb-algebra category HVbdl(M)

- $\omega_{u,v,w}$ define a 3-cocycle on \mathbb{R}^d with values in $C^{\infty}(M, U(1))$
- ► (χ_{v,w}, ω_{u,v,w}) define a higher weak 2-cocycle on ℝ^d with values in the Hilb-algebra category HVbdl(M)

► Theorem: (Bunk, Müller & Sz '18)

 $(\mathcal{P}_{v}, \Pi_{v,w})$ define a weak projective 2-representation of the translation group \mathbb{R}^{d} on the HVbdl(*M*)-module category $\Gamma(M, \mathcal{I}_{\rho})$ (2-Hilbert space of sections of the bundle gerbe \mathcal{I}_{ρ})

- $\omega_{u,v,w}$ define a 3-cocycle on \mathbb{R}^d with values in $C^{\infty}(M, U(1))$
- ► (χ_{v,w}, ω_{u,v,w}) define a higher weak 2-cocycle on ℝ^d with values in the Hilb-algebra category HVbdl(M)

► Theorem: (Bunk, Müller & Sz '18)

 $(\mathcal{P}_{v}, \Pi_{v,w})$ define a weak projective 2-representation of the translation group \mathbb{R}^{d} on the HVbdl(M)-module category $\Gamma(M, \mathcal{I}_{\rho})$ (2-Hilbert space of sections of the bundle gerbe \mathcal{I}_{ρ})

Open issues:

- Understand physical significance of 2-Hilbert space Γ(M, *L*_ρ): states, observables, ...
- Develop "Higher magnetic Weyl transform" to bridge higher geometric quantization with deformation quantization