

Grassmannian Geometry of Scattering Amplitudes LECTURE 3

Jaroslav Trnka

Center for Quantum Mathematics and Physics (QMAP) University of California, Davis

Qspace summer school, Benasque, September 2018

Building blocks: 3pt amplitudes

✤ In N=4 SYM

 $\mathcal{A}_{3}^{(2)} = \frac{\delta^{4}(p_{1} + p_{2} + p_{3})\delta^{8}(\lambda_{1}\widetilde{\eta}_{1} + \lambda_{2}\widetilde{\eta}_{2} + \lambda_{3}\widetilde{\eta}_{3})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}$

Note for Q fermion To extract 1^- helicity $\delta^4(Q) = Q^4$ take $\tilde{\eta}_1^4$

Building blocks: 3pt amplitudes

 $\mathcal{A}_{3}^{(2)} = \frac{\delta^{4}(p_{1} + p_{2} + p_{3})\delta^{8}(\lambda_{1}\tilde{\eta}_{1} + \lambda_{2}\tilde{\eta}_{2} + \lambda_{3}\tilde{\eta}_{3})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}$

Note for Q fermion To extract 1⁻ helicity $\delta^4(Q) = Q^4$ take $\tilde{\eta}_1^4$ $\delta^8(\lambda Q) = (\lambda^{(1)}Q)^4(\lambda^{(2)}Q)^4$

Building blocks: 3pt amplitudes

Let us build a diagram

Multiply four three point amplitudes

 $=\mathcal{A}_{3}^{(1)}(1P_{1}P_{4})\times\mathcal{A}_{3}^{(2)}(2P_{2}P_{1})\times\mathcal{A}_{3}^{(1)}(3P_{3}P_{2})\times\mathcal{A}_{3}^{(2)}(4P_{4}P_{3})$

Let us build a diagram

Multiply four three point amplitudes

Let us build a diagram

Multiply four three point amplitudes

 $= \mathcal{A}_{3}^{(1)}(1P_{1}P_{4}) \times \mathcal{A}_{3}^{(2)}(2P_{2}P_{1}) \times \mathcal{A}_{3}^{(1)}(3P_{3}P_{2}) \times \mathcal{A}_{3}^{(2)}(4P_{4}P_{3})$ \downarrow $\delta^{(24)}(\tilde{\eta}_{P_{1}}, \tilde{\eta}_{P_{2}}, \tilde{\eta}_{P_{3}}, \tilde{\eta}_{P_{4}})$

Let us build a diagram

Multiply four three point amplitudes

 $= \mathcal{A}_{3}^{(1)}(1P_{1}P_{4}) \times \mathcal{A}_{3}^{(2)}(2P_{2}P_{1}) \times \mathcal{A}_{3}^{(1)}(3P_{3}P_{2}) \times \mathcal{A}_{3}^{(2)}(4P_{4}P_{3})$ Some work with delta functions $\widetilde{\eta}_{P_{1}}^{4} \widetilde{\eta}_{P_{2}}^{4} \widetilde{\eta}_{P_{3}}^{4} \widetilde{\eta}_{P_{4}}^{4} \, \delta^{8}(\lambda_{1}\widetilde{\eta}_{1} + \lambda_{2}\widetilde{\eta}_{2} + \lambda_{3}\widetilde{\eta}_{3} + \lambda_{4}\widetilde{\eta}_{4})$

On-shell diagrams

Draw arbitrary graph with three point vertices

On-shell diagrams given by products of 3pt amplitudes • Parametrized by n, k k = 2B + W - P

Permutations

Permutations

Graphical way to represent permutations

 $(1, 2, \ldots, n) \rightarrow (\sigma(1), \sigma(2), \ldots, \sigma(n))$

 $(1, 2, 3, 4, 5, 6) \rightarrow (5, 3, 2, 6, 1, 4)$

 This picture actually represents a scattering process in 1+1 dimensions

Permutations

 These pictures are not unique: they satisfy Yang-Baxter move: anywhere in the diagram

 Unfortunately, this picture can not apply to 3+1 dimensions where the fundamental vertices are 3pt

New look at permutations

Can we represent permutation using 3pt vertices?
 Two different non-trivial permutations

 $(1,2,3) \to (2,3,1)$

 $(1, 2, 3) \rightarrow (3, 1, 2)$

New look at permutations

Glue these vertices into diagrams

For any permutation there is a diagram

New look at permutations

Glue these vertices into diagrams: plabic graph

For any permutation there is a diagram

 $(1, 2, 3, 4, 5, 6) \rightarrow (5, 4, 6, 1, 2, 3)$

Identity moves

- Are these diagrams unique for a given permutation?
- No! There are identity moves do not change permutation

merge-expand

square move

We already saw it in the context of on-shell diagrams

Identity moves

Example: related by a sequence of identity moves

Identity moves

Example: related by a sequence of identity moves

 $(1, 2, 3, 4, 5, 6) \rightarrow (5, 4, 6, 1, 2, 3)$

 If permutations are the same the diagrams are related by identity moves

Yang-Baxter moves

Let us replace

Yang-Baxter moves

And check the Yang-Baxter:

Reduced information

- Reduced diagrams: plabic graphs which represent permutations
- They include diagrams which were relevant for treelevel amplitudes (but so far it is just pictures)
- The information to fully reconstruct the tree-level amplitudes is given by a set of permutations
 permutation → reduced on-shell diagram

Positive Grassmannian

Positive matrices

Same diagrams came up in a very different context

Build matrices with positive maximal minors

 $n \\ k \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & \cdots & * \end{pmatrix} \qquad \begin{vmatrix} * & * & \cdots & * \\ & * & * & \cdots & * \\ & \vdots & \vdots & \vdots & \vdots \\ & * & * & \cdots & * \end{vmatrix} \ge 0$

Positive Grassmannian: mod out by GL(k)

Face variables

Draw a graph with two types of three point vertices

Associate variables with the face of diagram

with the property $\prod_{j} f_{j} = -1$

Perfect orientation

Add arrows:

Perfect orientation

White vertex: one in, two out Black vertex: two in, one out

Not unique, always exists at least one

Two (k) incoming, two (n-k) outgoing

Boundary measurement

product of all face * Define elements of $(k \times n)$ matrix variables to the right of the path $c_{ab} = -\sum_{\Gamma} \prod_{j} (-f_j) -$ incoming if b incoming sum over all $c_{aa} = 1$ allowed paths $c_{ab} = 0$ * Example: $c_{11} = c_{22} = 1$ $c_{12} = c_{21} = 0$ $c_{13} = *, c_{14} = *, c_{23} = *, c_{24} = *$

Entries of matrix

Apply on our example $c_{ab} = -\sum_{\Gamma} \prod_{j} (-f_j)$

 $-c_{13} = -f_0 f_3 f_4$

 $-c_{14} = f_0 f_4 - f_4$

 $-c_{23} = f_0 f_1 f_3 f_4 \qquad -c_{24} = f_0 f_1 f_4$

Positive matrix

The matrix is

$$C = \begin{pmatrix} 1 & 0 & f_0 f_3 f_4 & f_4 (1 - f_0) \\ 0 & 1 & -f_0 f_1 f_3 f_4 & -f_0 f_1 f_4 \end{pmatrix} \qquad \begin{array}{c} f_2 \\ \text{eliminated} \end{array}$$

* There always exists choice of signs for f_i such that $C \in G_+(k, n)$ $f_0 < 0$

For our case:

$$m_{12} = 1 \qquad m_{23} = -f_0 f_3 f_4 \qquad f_3 > 0$$

$$m_{13} = -f_0 f_1 f_3 f_4 \qquad m_{24} = -f_4 (1 - f_0) \rightarrow f_3 > 0$$

$$m_{14} = -f_0 f_1 f_4 \qquad m_{34} = f_0 f_1 f_3 f_4^2 \qquad f_4 < 0$$

All minors positive

 $f_1 < 0$

Edge variables

 There is another set of variables which are redundant but have nice interpretation

$$\begin{split} C_{iJ} &= -\sum_{\text{paths } i \to J} \prod \alpha_i \quad \text{edges along path} \\ c_{11} &= 1, \qquad c_{12} = 0, \qquad c_{21} = 0, \qquad c_{22} = 1 \\ c_{13} &= -\alpha_1 \alpha_5 \alpha_6 \alpha_3, \qquad c_{14} = -\alpha_1 (\alpha_5 \alpha_6 \alpha_7 + \alpha_8) \alpha_4 \\ c_{23} &= -\alpha_2 \alpha_6 \alpha_3, \qquad c_{24} = -\alpha_2 \alpha_6 \alpha_7 \alpha_4 \end{split}$$

• We have to fix one α_j in each vertex

Edge variables

 There is another set of variables which are redundant but have nice interpretation

$$C_{iJ} = -\sum_{\text{paths } i \to J} \prod \alpha_i \quad \text{edges along path}$$

$$C_{iJ} = -\sum_{\text{paths } i \to J} \prod \alpha_i \quad \text{edges along path}$$

$$C = \begin{pmatrix} 1 & 0 & -\alpha_1 \alpha_3 \alpha_5 \alpha_6 & -\alpha_1 \alpha_4 \alpha_5 \alpha_6 \alpha_7 - \alpha_1 \alpha_4 \alpha_8 \\ 0 & 1 & -\alpha_2 \alpha_3 \alpha_6 & -\alpha_2 \alpha_4 \alpha_6 \alpha_7 \end{pmatrix}$$

• We have to fix one α_j in each vertex

Setting α_j to zero means erasing the edge in the vertex

Cluster variables

- Face variables are cluster X-variables
- Identity moves: cluster transformations on face variables - compositions of cluster mutations

They preserve positivity

Cell in the Positive Grassmannian

- Cell in G₊(k, n): specified by a set of non-vanishing
 Plucker coordinates
- * Corresponds to configuration of points in \mathbf{P}^{k-1}

 $C = \begin{pmatrix} * & * & * & \cdots & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & \cdots & * & * \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix} = \begin{pmatrix} c_1 & c_2 & \cdots & c_n \end{pmatrix}$

Positivity = convexity of the configuration

Example of configuration

✤ G(3,6) example

 $c_4 = a_{34}c_3 \qquad c_5 = a_{25}c_2 + a_{35}c_3$

 $c_{6} = a_{16}c_{1} + zc_{5} = a_{16}c_{1} + za_{25}c_{5} + za_{35}c_{5}$ $C = \begin{pmatrix} 1 & 0 & 0 & 0 & a_{16} \\ 0 & 1 & 0 & 0 & a_{25} & za_{25} \\ 0 & 0 & 1 & a_{34} & a_{35} & za_{35} \end{pmatrix}$

Example of stratification

Boundaries: deformed special configurations

In the C-matrix send some positive variables to zero

Positivity: linear relations between consecutive points

Relation to permutations

The configuration of points gives the link to permutations

* Point $i \to \sigma(i)$ if $i \in (i+1, i+2, \dots, \sigma(i))$

$$\begin{split} 1 &\subset (2, 34, 5, 6) \to \sigma(1) = 6, & 2 &\subset (34, 5) \to \sigma(2) = 5, \\ 3 &\subset (4) \to \sigma(3) = 4, & 4 &\subset (5, 6, 1, 2) \to \sigma(4) = 2, \\ 5 &\subset (6, 1) \to \sigma(5) = 1, & 6 &\subset (1, 2, 3) \to \sigma(6) = 3. \end{split}$$

Boundary operator

There is a notion of the boundary operator and stratification

Boundary operator

Making the configuration more special

Boundary operator

Erasing an edge in the plabic graph

Stratification of the positive Grassmannian

Example of G(2,4):

Summary of positive Grassmannian

Reduced graphs (mod identity moves) Permutations Configuration of vectors with linear dependencies Cells of Positive Grassmannian

Thank you for attention!