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Note for      fermion

✤ In N=4 SYM

Building blocks: 3pt amplitudes

A(1)
3 =

�4(p1 + p2 + p3)�4([23]e⌘1 + [31]e⌘2 + [12]e⌘3)
[12][23][31]

A(2)
3 =

�4(p1 + p2 + p3)�8(�1e⌘1 + �2e⌘2 + �3e⌘3)
h12ih23ih31i

�4(Q) = Q4
Q To extract      helicity

take

1�

e⌘41
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✤ In N=4 SYM

Building blocks: 3pt amplitudes

e⌘41 component

e⌘42e⌘43 component

[23]4

h23i4
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P

✤ Let us build a diagram

Gluing three point amplitudes

Multiply four three
point amplitudes

P1

P2

P3

P4

= A(1)
3 (1P1P4)⇥A(2)

3 (2P2P1)⇥A(1)
3 (3P3P2)⇥A(2)

3 (4P4P3)
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P

✤ Let us build a diagram

Gluing three point amplitudes

Multiply four three
point amplitudes

P1

P2

P3

P4

= A(1)
3 (1P1P4)⇥A(2)

3 (2P2P1)⇥A(1)
3 (3P3P2)⇥A(2)

3 (4P4P3)

Some work with delta functions

e⌘4P1
e⌘4P2

e⌘4P3
e⌘4P4

�8(�1e⌘1 + �2e⌘2 + �3e⌘3 + �4e⌘4)



✤ Draw arbitrary graph with three point vertices

✤ Parametrized by 

On-shell diagrams given by products of 3pt amplitudes

On-shell diagrams

n, k k = 2B +W � P



Permutations



Permutations

✤ Graphical way to represent permutations

✤ This picture actually represents a scattering process in 
1+1 dimensions

(1, 2, 3, 4, 5, 6) ! (5, 3, 2, 6, 1, 4)

(1, 2, . . . , n) ! (�(1),�(2), . . . ,�(n))



Permutations

✤ These pictures are not unique: they satisfy Yang-Baxter 
move: anywhere in the diagram

✤ Unfortunately, this picture can not apply to 3+1 
dimensions where the fundamental vertices are 3pt



New look at permutations

✤ Can we represent permutation using 3pt vertices?
Two different non-trivial permutations

(1, 2, 3) ! (2, 3, 1) (1, 2, 3) ! (3, 1, 2)



✤ Glue these vertices into diagrams

New look at permutations

For any permutation
there is a diagram



✤ Glue these vertices into diagrams: plabic graph

New look at permutations

(1, 2, 3, 4, 5, 6) ! (5, 4, 6, 1, 2, 3)

For any permutation
there is a diagram



✤ Are these diagrams unique for a given permutation?

✤ No! There are identity moves - do not change permutation

✤ We already saw it in the context of on-shell diagrams

Identity moves

square movemerge-expand



✤ Example: related by a sequence of identity moves

Identity moves



✤ Example: related by a sequence of identity moves

✤ If permutations are the same the diagrams are related by 
identity moves

(1, 2, 3, 4, 5, 6) ! (5, 4, 6, 1, 2, 3)

Identity moves



Yang-Baxter moves

✤ Let us replace

or



✤ And check the Yang-Baxter:

Yang-Baxter moves



Reduced information

✤ Reduced diagrams: plabic graphs which represent 
permutations

✤ They include diagrams which were relevant for tree-
level amplitudes (but so far it is just pictures)

✤ The information to fully reconstruct the tree-level 
amplitudes is given by a set of permutations

permutation reduced on-shell diagram



Positive Grassmannian



Positive matrices

✤ Same diagrams came up in a very different context

✤ Build matrices with positive maximal minors

✤ Positive Grassmannian: mod out by GL(k)

0
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...
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CCCA
k

n
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✤ Draw a graph with two types of three point vertices

✤ Associate variables with the face of diagram

Face variables

Thus, the final relations involving the e�’s is encoded by the matrix C ⌘
✓
1 0 c1 3 c1 4
0 1 c2 3 c2 4

◆
.

Notice that only certain combinations of edge-weights appear in the equations.

This happens for a very simple—and by now familiar—reason. Think of the GL(1)-

redundancy of each vertex as a gauge-group, with the variable of a directed edge

charged as a “bi-fundamental” of the GL(1)⇥GL(1) of the vertices it connects.

Since the configuration C must be invariant under these “gauge groups”, only gauge-

invariant combinations of the edge variables can appear. And just as we saw in the

previous subsection, these combinations are those familiar from lattice gauge theory

and can be viewed as encoding the flux though each closed loop in the graph—that

is, each of its faces. Fixing the orientation of each face to be clockwise, the flux

through it is given by the product of ↵e (↵�1
e ) for each aligned (anti-aligned) edge

along its boundary. For future convenience, we define the face variables fi to be

minus this product.

Applying this to the example above, we find:

, with

f1=

↵�1
1 ↵�1

5 ↵2

f4=

↵4 ↵8 ↵1

f0=

↵5 ↵6 ↵7 ↵
�1
8

f2=

↵�1
2 ↵�1

6 ↵�1
3

f3=

↵3 ↵
�1
7 ↵�1

4

The boundary-measurements cAa can then be expressed in terms of the faces by

cAa = �
X

�2{A a}

Y

f2b�

(�f) , (4.61)

where b� is the ‘clockwise’ closure of �. (If there are any closed, directed loops, the

geometric series of faces enclosed should be summed.) The faces of course over-count

the degrees of freedom by one, and this is reflected by the fact that
Q

i(�fi) = 1.

c1 3 = f0 f3 f4 c1 4 = f0 f4
� f4

c2 3 = f0 f1 f3 f4 c2 4 = f0 f1 f4

– 40 –

with the property
Y

j

fj = �1



Perfect orientation

✤ Add arrows:

✤ Not unique, always exists at least one

✤ Two (k) incoming, two (n-k) outgoing
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✓
1 0 c1 3 c1 4
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◆
.
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– 40 –

Perfect orientation

White vertex: one in, two out
Black vertex: two in, one out



Boundary measurement

✤ Define elements of               matrix

✤ Example:

cab = �
X

�

Y

j

(�fj)

(k ⇥ n)

incoming

Perfect orientation

✤ Back to on-shell diagrams

✤ Not unique, always exists at least one

✤ Two (k) incoming, two (n-k) outgoing
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◆
.
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This happens for a very simple—and by now familiar—reason. Think of the GL(1)-

redundancy of each vertex as a gauge-group, with the variable of a directed edge

charged as a “bi-fundamental” of the GL(1)⇥GL(1) of the vertices it connects.

Since the configuration C must be invariant under these “gauge groups”, only gauge-

invariant combinations of the edge variables can appear. And just as we saw in the

previous subsection, these combinations are those familiar from lattice gauge theory

and can be viewed as encoding the flux though each closed loop in the graph—that

is, each of its faces. Fixing the orientation of each face to be clockwise, the flux

through it is given by the product of ↵e (↵�1
e ) for each aligned (anti-aligned) edge

along its boundary. For future convenience, we define the face variables fi to be

minus this product.

Applying this to the example above, we find:

, with

f1=

↵�1
1 ↵�1

5 ↵2

f4=

↵4 ↵8 ↵1

f0=

↵5 ↵6 ↵7 ↵
�1
8

f2=

↵�1
2 ↵�1

6 ↵�1
3

f3=

↵3 ↵
�1
7 ↵�1

4

The boundary-measurements cAa can then be expressed in terms of the faces by

cAa = �
X

�2{A a}

Y

f2b�

(�f) , (4.61)
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Perfect orientation

White vertex: one in, two out
Black vertex: two in, one out

sum over all
allowed paths

product of all face
variables to the 
right of the path

if b incoming

cab = 0

c13 = ⇤, c14 = ⇤, c23 = ⇤, c24 = ⇤

caa = 1

c11 = c22 = 1 c12 = c21 = 0



Entries of matrix

Thus, the final relations involving the e�’s is encoded by the matrix C ⌘
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Perfect orientation

White vertex: one in, two out
Black vertex: two in, one outcab = �

X

�

Y

j

(�fj)

Apply on our example



Positive matrix

✤ The matrix is

✤ There always exists choice of signs for       such that 

✤ For our case:

C =

✓
1 0 f0f3f4 f4(1� f0)
0 1 �f0f1f3f4 �f0f1f4

◆
f2

eliminated

fi
C 2 G+(k, n)

m12 = 1
m13 = �f0f1f3f4
m14 = �f0f1f4

m23 = �f0f3f4
m24 = �f4(1� f0)

m34 = f0f1f3f
2
4

f0 < 0

f4 < 0

f1 < 0

f3 > 0

All minors positive



Edge variables

✤ There is another set of variables which are redundant 
but have nice interpretation

✤ We have to fix one      in each vertex

Once we have given a perfect orientation, the system of equations C ·e� becomes

trivial to construct: each vertex can be viewed as giving an equation which expands

the e�’s of the vertex’s sources in terms of those of its sinks. Combining all such

equations then gives us an expansion of the external sources’ e�’s in terms of those of

the external sinks. Notice that when identifying two legs, (Iin, Iout) during amalga-

mation the degree of freedom lost in the process is accounted for via the replacement

of the pair (↵Iin ,↵Iout) with the single variable ↵I ⌘ ↵Iin↵Iout .

If we denote the external sources of a graph by {a1, . . . , ak} ⌘ A, then the final

linear relations imposed on the e�’s can easily be seen to be given by,
e�A + cAa

e�a = 0, (4.56)

with
cAa = �

X

�2{A a}

Y

e2�

↵e , (4.57)

and where � 2 {A a} is any (directed) path from A to a in the graph. (If there is

a closed, directed loop, then the geometric series should be summed—we will see an

example of this in (4.64).) The entries of the matrix cAa are called the “boundary

measurements” of the on-shell graph. The on-shell form on C(↵)2G(k, n) can then

be written in terms of the variables cAa according to: 
Y

vertices v

1

vol(GL(1)v)

! 
Y

edges e

d↵e

↵e

!
�k⇥4(C ·e⌘)�k⇥2(C ·e�)�2⇥(n�k)(�·C?) . (4.58)

Let us consider a simple example to see how this works. Consider the following

perfectly oriented graph:

(4.59)

Using the equations for each directed 3-particle vertex, we can easily expand the e�
of each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,

e�2 = ↵2↵6(↵3
e�3 + ↵7(↵4

e�4)). (4.60)

Such expansions obviously result in (4.57): the coe�cient cAa of e�a in the expan-

sion of e�A is simply (minus) the product of all edge-variables ↵e along any path

� 2 {A a}. Doing this for all the cAa of our example above, we find,

c1 3 = ↵1 ↵5 ↵6 ↵3 c1 4 = ↵1 ↵5 ↵6 ↵7 ↵4
+ ↵1 ↵8 ↵4

c2 3 = ↵2 ↵6 ↵3 c2 4 = ↵2 ↵6 ↵7 ↵4

– 39 –

Edge variables

I Variables associated with edges, orientation for the graph.

I There is a GL(1) redundancy in each vertex. The edge
variables are ”connections” on the graph.

I The rule for entries of the C matrix,

CiJ = �
X

paths i!J

Y
↵i edges along path

I For this example:
c11 = 1, c12 = 0, c21 = 0, c22 = 1

c13 = �↵1↵5↵6↵3, c14 = �↵1(↵5↵6↵7 + ↵8)↵4

c23 = �↵2↵6↵3, c24 = �↵2↵6↵7↵4

Edge variables

I Variables associated with edges, orientation for the graph.

I There is a GL(1) redundancy in each vertex. The edge
variables are ”connections” on the graph.

I The rule for entries of the C matrix,

CiJ = �
X

paths i!J

Y
↵i edges along path

I For this example:
c11 = 1, c12 = 0, c21 = 0, c22 = 1

c13 = �↵1↵5↵6↵3, c14 = �↵1(↵5↵6↵7 + ↵8)↵4

c23 = �↵2↵6↵3, c24 = �↵2↵6↵7↵4

↵j
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✤ There is another set of variables which are redundant 
but have nice interpretation

✤ We have to fix one      in each vertex

Once we have given a perfect orientation, the system of equations C ·e� becomes
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and where � 2 {A a} is any (directed) path from A to a in the graph. (If there is

a closed, directed loop, then the geometric series should be summed—we will see an

example of this in (4.64).) The entries of the matrix cAa are called the “boundary

measurements” of the on-shell graph. The on-shell form on C(↵)2G(k, n) can then
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of each source—legs 1 and 2—in terms of those of the sinks—legs 3 and 4; e.g.,
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Edge variables

I Variables associated with edges, orientation for the graph.

I There is a GL(1) redundancy in each vertex. The edge
variables are ”connections” on the graph.

I The rule for entries of the C matrix,

CiJ = �
X

paths i!J

Y
↵i edges along path

I For this example:
c11 = 1, c12 = 0, c21 = 0, c22 = 1

c13 = �↵1↵5↵6↵3, c14 = �↵1(↵5↵6↵7 + ↵8)↵4
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↵jSetting      to zero means erasing the edge in the vertex

↵j



✤ Face variables are cluster X-variables

✤ Identity moves: cluster transformations on face 
variables - compositions of cluster mutations

Cluster variables

They preserve positivity



Cell in the Positive Grassmannian

✤ Cell in                 : specified by a set of non-vanishing 
Plucker coordinates

✤ Corresponds to configuration of points in 

✤ Positivity = convexity of the configuration

G+(k, n)

Pk�1

The Positive Grassmannian

I Grassmannian G(k, n): space of k-dimensional planes in n
dimensions, represented by k ⇥ n matrix modulo GL(k),

C =

0

B@
⇤ ⇤ ⇤ . . . ⇤ ⇤
...
...
...
...
...
...

⇤ ⇤ ⇤ . . . ⇤ ⇤

1

CA =

0

B@
v1
...
vk

1

CA =
�
c1 c2 . . . cn

�

I We can think about it as collection of k vectors v1, . . . , vk in
n dimensions which specify the plane.

I We consider a positive part of G(k, n) which is a space with
boundaries.



Example of configuration

✤ G(3,6) example

The Positive Grassmannian

I Back to 6pt example:

I Linear dependencies: fix points 1, 2, 3,

c4 = a34c3 c5 = a25c2 + a35c3

c6 = a16c1 + zc5 = a16c1 + za25c5 + za35c5

C =

0

@
1 0 0 0 0 a16
0 1 0 0 a25 za25
0 0 1 a34 a35 za35

1

A

I This is 5-dimensional cell in G(3, 6).



Example of stratification

✤ Boundaries: deformed special configurations

✤ In the C-matrix send some positive variables to zero

✤ Positivity: linear relations between consecutive points

The Positive Grassmannian

I Positive part of G(k, n): convex configurations of points.
I Top cell in the Grassmannian (no constraint imposed) !
configuration of n generic points in Pk�1.

I Stratification of the space is nicely provided by imposing linear
dependencies between consecutive points

This corresponds to sending minors of G+(k, n) to zero.
I Boundaries preserve convexity: all minors of G+(k, n) stay
positive (except the ones sent to zero).



Relation to permutations

✤ The configuration of points gives the link to permutations

✤ Point                if i ! �(i) i 2 (i+ 1, i+ 2, . . .�(i))

Configuration of vectors

I Permutations $ Configuration of n points Pk�1 in with
consecutive linear dependencies.

I Permutation �(i) means that i ⇢ span(i+1, . . .�(i))
I Example: n = 6, k = 3, we have six points in P2.

1 ⇢ (2, 34, 5, 6) ! �(1) = 6, 2 ⇢ (34, 5) ! �(2) = 5,
3 ⇢ (4) ! �(3) = 4, 4 ⇢ (5, 6, 1, 2) ! �(4) = 2,
5 ⇢ (6, 1) ! �(5) = 1, 6 ⇢ (1, 2, 3) ! �(6) = 3.

I The permutation is (1, 2, 3, 4, 5, 6) ! (6, 5, 4, 8, 7, 9).



Boundary operator

✤ There is a notion of the boundary operator and stratification

The Analytic S-Matrix, Redux
Two Roads to the Grassmannian

Grassmannian Polytopes, Leading Singularities, and All That

The Complete Classification of Yangian Invariants
Relations Among Yangian Invariants

A Theorem for 11-Point N3MHV Leading Singularities

+ ––

+

27th April, 2012 Harvard String Theory Seminar Quantum Field Theory and Grassmannian Geometry



✤ Making the configuration more special

Boundary operator
The Analytic S-Matrix, Redux

Two Roads to the Grassmannian
Grassmannian Polytopes, Leading Singularities, and All That

The Complete Classification of Yangian Invariants
Relations Among Yangian Invariants

A Theorem for 11-Point N3MHV Leading Singularities

+ ––

+

27th April, 2012 Harvard String Theory Seminar Quantum Field Theory and Grassmannian Geometry



✤ Erasing an edge in the plabic graph

Boundary operator
The Analytic S-Matrix, Redux

Two Roads to the Grassmannian
Grassmannian Polytopes, Leading Singularities, and All That

The Complete Classification of Yangian Invariants
Relations Among Yangian Invariants

A Theorem for 11-Point N3MHV Leading Singularities

+ ––

+

27th April, 2012 Harvard String Theory Seminar Quantum Field Theory and Grassmannian Geometry



Stratification of the positive 
Grassmannian

✤ Example of G(2,4):

1 2 4 1 3 42 41 32 3

1 2,32 3,1 1 2,42 4,1 1,2 3 1 3,42 3,4 1,2 4 3 4,2 3 4,1 2,3 4 1,3 4

2 31 4 13 41,2,32 3,4,1 1 24 3 421 2,3,4 3 4,1,21,2 3,4 2,3 4,1

2 3,41 4 1,23 1 2,343 4,12

2 3 41



Summary of positive Grassmannian

Reduced graphs (mod identity moves)

Permutations

Configuration of vectors with linear dependencies

Cells of Positive Grassmannian



Thank you for attention!


