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Why NR in modified gravity theories?

• Conclusion of Kento’s talk: “True potential of GWs is limited by the lack of knowledge of the 
merger phase in non-GR theories” 

• NR is the only tool we have to study the merger phase of compact binaries

• Early-inspiral phase carries information,on negative-PN contributions (such as dipole radiation),   
late-inspiral and merger carry information on the strong-field, large curvature regime of gravity:

complementary information

• PN approaches can not be accurate enough to test GR deviation even in late inspiral: 
phenomenological waveforms & EOB require calibration of parameters from NR simulations. 

   Even few NR simulations of binary BH (BBH) mergers may be sufficient for this task!

• As discussed in Thomas’ , Frans’ ,  Luis’ talks, this is a very challenging task (well posedness, 
gauge choices, difficult numerical implementation).  Very few results up to now:

- most results in scalar-tensor theory (Palenzuela et al., Healy et al., Barausse et al.) but no-hair theorems!
- dynamical Chern-Simons: well-posed only with EFT approach (Delsate et al. ’15)        
   binary BH evolution with EFT approach in (Okounkova et al. ‘17), see Okounkova’s talk 



Why sGB gravity?
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SCALAR-TENSOR GRAVITY (one scalar field)
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2.2.3. Horndeski gravity. The most general scalar-tensor theory with second-order
field equations (and one scalar field) is Horndeski gravity [235]. The action of
Horndeski gravity can be written in terms of Galileon interactions (see [236] and
Section 2.6) as

S =

Z

d4x
p�g

n

K(�, X) � G3(�, X)⇤�

+ G4(�, X)R + G4,X(�, X)
⇥

(⇤�)2 � (rµr⌫�)(rµr⌫�)
⇤

+ G5(�, X)Gµ⌫rµr⌫� � G5,X(�, X)

6

h

(⇤�)3 � 3⇤�(rµr⌫�)(rµr⌫�)

+ 2(rµr⌫�)(rµr��)(r⌫r��)
io

,

(2.9)

where K, the Gi’s (i = 1 . . . 5) are functions of the scalar field � and of its kinetic term
X = �1/2@µ�@µ�, and Gi,X are derivatives of Gi with respect to the kinetic term X.
For a particular choice of these functions, this theory coincides with Gauss-Bonnet
gravity (see Section 2.4).

As we shall discuss in Section 3.2, in Horndeski theory the no-hair theorem can
be circumvented, and thus stationary BH solutions can be different from GR.

2.3. Metric f(R) theories

The standard paradigm to explain the acceleration of the cosmic expansion is to
postulate the existence of a diffuse form of dark energy described by an exotic equation
of state (P ⇡ �⇢) and amounting to roughly 70% of the critical energy density. The
cosmological constant is the most natural candidate for this dark “fluid,” although its
tiny value (as inferred by cosmological observations) clashes with the value of vacuum
energy as inferred from particle physics. As mentioned above, this is one of the main
theoretical problems: the cosmological constant problem [5,237,238].

As an alternative to the standard ⇤CDM (⇤-Cold Dark Matter) model, it has
been proposed that infrared modifications of gravity could be the explanation for the
cosmic acceleration. In this context, so-called f(R) modified gravities have a long
history [239] and have been widely explored as prototypical infrared corrections to
GR. The action for f(R) gravity reads

S =
1

16⇡

Z

d4x
p�gf(R) + SM [ , gµ⌫ ] , (2.10)

where  collectively denotes all matter fields and f(R) is a function of the scalar
curvature R. Iy is customary to use a simplified notation where fR ⌘ f 0(R),
fRR ⌘ f 00(R) and so on. We shall focus for the moment on the theory obtained
from the action above through a metric variational principle. Palatini f(R) gravity is
a completely different theory, that will be discussed in Section 2.7 below.

Primarily, f(R) theories attracted attention for their potential to describe
the cosmological acceleration of the Universe without a fine-tuned cosmological
constant [11]. Viable f(R) models are usually chosen by ensuring that the field
equations admit a de Sitter solution with curvature radius RdS. We refer the reader to
specialized reviews [11,12,14] for a more detailed discussion on the theoretical aspects
and on current experimental constraints.
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the Gauss-Bonnet scalar R2
GB ⌘ R2 � 4R2

µ⌫ + R2
µ⌫⇢� and the Pontryagin scalar (also

referred to as the Chern-Simons scalar) defined above, because these terms can be
shown to emerge in low-energy realizations of string theory [215,249]. The Pontryagin
scalar also appears in loop quantum gravity [250]. However, these terms alone do not
yield modifications to Einstein’s equations in four spacetime dimensions, because their
integrals are four-dimensional topological invariants and only account for boundary
terms in the action. To circumvent this problem one is thus forced to add extra
dynamical fields, i.e., extra propagating degrees of freedom (but cf. Section 2.7 below
for a different strategy using nondynamical fields). The simplest way to introduce
nontrivial higher-order curvature corrections is via coupling with a scalar field.

The most generic class of four-dimensional theories obtained by including all
quadratic algebraic curvature invariants coupled to a single scalar field reads [74,80]

S =
1

16⇡

Z p�gd4x
h

R � 2ra�ra� � V (�) + f1(�)R2

+ f2(�)Rµ⌫R
µ⌫ + f3(�)Rµ⌫⇢�Rµ⌫⇢� + f4(�)⇤RR

i

+ Smat [ , �(�)gµ⌫ ] ,

(2.21)

where V (�) is the scalar self-potential, fi(�) (i = 1, . . . , 4) are coupling functions,
and in the matter action Smat we have included a nonminimal but universal metric
coupling, which thus satisfies the weak (but in general not the strong) equivalence
principle. The action (2.21) generically yields higher-order field equations that are
prone to the Ostrogradski instability and to the appearance of ghosts, unless the
various terms appear in the special combination corresponding to the four-dimensional
Gauss-Bonnet invariant (discussed in Section 2.4.1 below). To avoid this instability,
the theory (2.21) must be considered as an effective action, obtained as the truncation
of a more general theory, valid only up to second order in curvature.⇤ In the decoupling
limit (where the effective theory is valid, see Section 2.8), a perturbative approach
is applicable and the field equations remain of second differential order for generic
combinations of the curvature invariants. For example, it has been shown that dCS
gravity (introduced in Section 2.4.2 below) does not exhibit any ghost-like instabilities
when treated order-by-order in the perturbation scheme and, in fact, can be cast into a
well-posed Cauchy problem in the decoupling limit [44]. We expect a similar argument
to hold for EdGB gravity (see Section 2.4.1), but a rigorous proof in this case is still
missing.

The EFT approach is not only motivated by the desire to avoid higher-order
derivatives in the field equations, but it arises naturally in some low-energy expansion
in string theory, which indeed contains the Gauss-Bonnet and Chern-Simons terms
coupled respectively to the dilaton and axion at second order in the curvature. In this
approach the Einstein-Hilbert term is considered as the first-order term in a (possibly
infinite) series expansion containing all possible curvature corrections. In this sense,
GR may be only accurate up to second-order terms in the curvature.

In the geometrical units adopted here, the scalar field entering the action (2.21)
is dimensionless, whereas the coupling functions fi(�) have the dimensions of a length
squared, i.e. of an inverse curvature. Thus, at variance with the scalar-tensor theories

⇤ Alternatively, one can circumvent the Ostrogradski instability by expanding the phase-space of the
(dynamical) variables if the resulting equations of motion constitute a closed system of PDEs that
are at most second order [251,252].
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We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss–Bonnet invariant
that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories
formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if
certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of
many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

Introduction. Gravitational wave observations allow us to
probe the structure of black holes (BHs) with unprecedented
accuracy. Hence, they can reveal the existence of new funda-
mental scalar fields [1, 2], provided that they leave an imprint
on BHs. However, no-hair theorems (see [3, 4] for reviews)
dictate that conventional scalar-tensor theories will have the
same stationary, asymptotically flat BH solutions as general
relativity (GR) [5–7]. In spherical symmetry [8] and slow
rotation [9, 10], this result extends to generalized scalar-tensor
theories, i.e. theories that exhibit derivative self-interactions
and derivative couplings between the scalar and curvature in-
variants, provided that the scalar respects shift symmetry.

One could still detect scalars in these theories through the
imprint they leave when they are excited [11, 12]. One can
also circumvent no-hair theorems by violating some of their
assumptions [13–16]. No-hair theorems also help single out
particularly interesting theories that have hairy BHs. A well-
studied example is the action

S =
1

2

∫

d4x
√
−g

[

R −
1

2
∇αϕ∇αϕ + f (ϕ)G

]

+ Sm[gµν,ψ] ,

(1)

where G ≡ RµνρσRµνρσ − 4RµνRµν
+ R2 is the Gauss-Bonnet

invariant. We use geometrical units with c = 8πG = 1 and
the mostly plus metric signature. The scalar field ϕ is coupled
to G , which has dimensions of length−4 (≡ L−4), through a
function f (ϕ), with dimensions L2. The matter fields ψ are
minimally coupled to the metric gµν through the action Sm.
We will refer to this class of theories as scalar-Gauss-Bonnet
(sGB) gravity. When f is exponential the theory is well-known
to admit hairy BHs [17], whereas a linear f yields the only
shift-symmetric theory with second-order field equations that
exhibits BH hair [9, 10] (despite the no-hair theorem of [8]).

The main purpose of this paper is to demonstrate that a new
subclass of theories, contained in (1), exhibits a particularly
interesting phenomenon: BH spontaneous scalarization. As
we demonstrate below, this subclass of theories generically
admits solutions where the scalar field is constant and the
metric satisfies Einstein’s equations. However, under certain

conditions these solutions are unstable, and solutions where
the scalar field in nontrivial are dynamically preferred. This
leads to hairy BHs only when the BH mass lies within certain
ranges. Compact stars in these theories also exhibit sponta-
neous scalarization. The mechanism resembles that proposed
by Damour and Esposito-Farèse [18], where there is a cou-
pling between ϕ and the trace of the stress-energy tensor, T .
However, there are important differences – most notably the
fact that the effect is present for BHs as well.

A no-hair theorem in sGB and how to evade it. We start by
identifying the class of theories in question. Varying (1) with
respect to ϕ and gµν yields

!ϕ = − f,ϕG , (2a)

Rµν −
1

2
gµνR = Tµν . (2b)

Here Tµν is the sum of the matter stress-energy tensor Tm
µν ≡

−(2/√−g)(δSm/δgµν), plus a contribution coming from the
variation of the ϕ-dependent part of the action with respect to
the metric (see e.g. [17]).

Eq. (2a) does not admit ϕ = constant solutions, unless

f,ϕ(ϕ0) = 0 , (3)

for some constant ϕ0. We consider Eq. (3) as an existence

condition for GR solutions and focus on theories that satisfy
it. This excludes the widely studied class of dilatonic theories
where f ∼ exp(ϕ) and the shift-symmetric f ∼ ϕ theory
discussed above [9, 10, 17].

Focus now on BH solutions that are asymptotically flat and
stationary. These admit a Killing vector ξµ that is timelike at
infinity and acts as a generator of the event horizon. Assuming
that ϕ respects stationarity, ξµ∇µϕ = 0. Multiplying Eq. (2a)
by f,ϕ and integrating over a volume V yields

∫

V

d4x
√
−g

[

f,ϕ!ϕ + f 2
,ϕ(ϕ)G

]

= 0 . (4)

Integrating by parts and using the divergence theorem, we
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the Gauss-Bonnet scalar R2
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µ⌫ + R2
µ⌫⇢� and the Pontryagin scalar (also

referred to as the Chern-Simons scalar) defined above, because these terms can be
shown to emerge in low-energy realizations of string theory [215,249]. The Pontryagin
scalar also appears in loop quantum gravity [250]. However, these terms alone do not
yield modifications to Einstein’s equations in four spacetime dimensions, because their
integrals are four-dimensional topological invariants and only account for boundary
terms in the action. To circumvent this problem one is thus forced to add extra
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for a different strategy using nondynamical fields). The simplest way to introduce
nontrivial higher-order curvature corrections is via coupling with a scalar field.

The most generic class of four-dimensional theories obtained by including all
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S =
1

16⇡

Z p�gd4x
h
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+ f2(�)Rµ⌫R
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(2.21)

where V (�) is the scalar self-potential, fi(�) (i = 1, . . . , 4) are coupling functions,
and in the matter action Smat we have included a nonminimal but universal metric
coupling, which thus satisfies the weak (but in general not the strong) equivalence
principle. The action (2.21) generically yields higher-order field equations that are
prone to the Ostrogradski instability and to the appearance of ghosts, unless the
various terms appear in the special combination corresponding to the four-dimensional
Gauss-Bonnet invariant (discussed in Section 2.4.1 below). To avoid this instability,
the theory (2.21) must be considered as an effective action, obtained as the truncation
of a more general theory, valid only up to second order in curvature.⇤ In the decoupling
limit (where the effective theory is valid, see Section 2.8), a perturbative approach
is applicable and the field equations remain of second differential order for generic
combinations of the curvature invariants. For example, it has been shown that dCS
gravity (introduced in Section 2.4.2 below) does not exhibit any ghost-like instabilities
when treated order-by-order in the perturbation scheme and, in fact, can be cast into a
well-posed Cauchy problem in the decoupling limit [44]. We expect a similar argument
to hold for EdGB gravity (see Section 2.4.1), but a rigorous proof in this case is still
missing.

The EFT approach is not only motivated by the desire to avoid higher-order
derivatives in the field equations, but it arises naturally in some low-energy expansion
in string theory, which indeed contains the Gauss-Bonnet and Chern-Simons terms
coupled respectively to the dilaton and axion at second order in the curvature. In this
approach the Einstein-Hilbert term is considered as the first-order term in a (possibly
infinite) series expansion containing all possible curvature corrections. In this sense,
GR may be only accurate up to second-order terms in the curvature.

In the geometrical units adopted here, the scalar field entering the action (2.21)
is dimensionless, whereas the coupling functions fi(�) have the dimensions of a length
squared, i.e. of an inverse curvature. Thus, at variance with the scalar-tensor theories

⇤ Alternatively, one can circumvent the Ostrogradski instability by expanding the phase-space of the
(dynamical) variables if the resulting equations of motion constitute a closed system of PDEs that
are at most second order [251,252].
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Why sGB gravity?

`

scalarized:        f=𝛼𝜑2               Gauss-Bonnet gravity  with scalarization                                              
                     f=𝛼(1-exp(-6𝜑2))        (Silva et al. ’17, Doneva & Yazadjiev ‘17)
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We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss–Bonnet invariant
that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories
formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if
certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of
many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

Introduction. Gravitational wave observations allow us to
probe the structure of black holes (BHs) with unprecedented
accuracy. Hence, they can reveal the existence of new funda-
mental scalar fields [1, 2], provided that they leave an imprint
on BHs. However, no-hair theorems (see [3, 4] for reviews)
dictate that conventional scalar-tensor theories will have the
same stationary, asymptotically flat BH solutions as general
relativity (GR) [5–7]. In spherical symmetry [8] and slow
rotation [9, 10], this result extends to generalized scalar-tensor
theories, i.e. theories that exhibit derivative self-interactions
and derivative couplings between the scalar and curvature in-
variants, provided that the scalar respects shift symmetry.

One could still detect scalars in these theories through the
imprint they leave when they are excited [11, 12]. One can
also circumvent no-hair theorems by violating some of their
assumptions [13–16]. No-hair theorems also help single out
particularly interesting theories that have hairy BHs. A well-
studied example is the action

S =
1

2

∫

d4x
√
−g

[

R −
1

2
∇αϕ∇αϕ + f (ϕ)G

]

+ Sm[gµν,ψ] ,

(1)

where G ≡ RµνρσRµνρσ − 4RµνRµν
+ R2 is the Gauss-Bonnet

invariant. We use geometrical units with c = 8πG = 1 and
the mostly plus metric signature. The scalar field ϕ is coupled
to G , which has dimensions of length−4 (≡ L−4), through a
function f (ϕ), with dimensions L2. The matter fields ψ are
minimally coupled to the metric gµν through the action Sm.
We will refer to this class of theories as scalar-Gauss-Bonnet
(sGB) gravity. When f is exponential the theory is well-known
to admit hairy BHs [17], whereas a linear f yields the only
shift-symmetric theory with second-order field equations that
exhibits BH hair [9, 10] (despite the no-hair theorem of [8]).

The main purpose of this paper is to demonstrate that a new
subclass of theories, contained in (1), exhibits a particularly
interesting phenomenon: BH spontaneous scalarization. As
we demonstrate below, this subclass of theories generically
admits solutions where the scalar field is constant and the
metric satisfies Einstein’s equations. However, under certain

conditions these solutions are unstable, and solutions where
the scalar field in nontrivial are dynamically preferred. This
leads to hairy BHs only when the BH mass lies within certain
ranges. Compact stars in these theories also exhibit sponta-
neous scalarization. The mechanism resembles that proposed
by Damour and Esposito-Farèse [18], where there is a cou-
pling between ϕ and the trace of the stress-energy tensor, T .
However, there are important differences – most notably the
fact that the effect is present for BHs as well.

A no-hair theorem in sGB and how to evade it. We start by
identifying the class of theories in question. Varying (1) with
respect to ϕ and gµν yields

!ϕ = − f,ϕG , (2a)

Rµν −
1

2
gµνR = Tµν . (2b)

Here Tµν is the sum of the matter stress-energy tensor Tm
µν ≡

−(2/√−g)(δSm/δgµν), plus a contribution coming from the
variation of the ϕ-dependent part of the action with respect to
the metric (see e.g. [17]).

Eq. (2a) does not admit ϕ = constant solutions, unless

f,ϕ(ϕ0) = 0 , (3)

for some constant ϕ0. We consider Eq. (3) as an existence

condition for GR solutions and focus on theories that satisfy
it. This excludes the widely studied class of dilatonic theories
where f ∼ exp(ϕ) and the shift-symmetric f ∼ ϕ theory
discussed above [9, 10, 17].

Focus now on BH solutions that are asymptotically flat and
stationary. These admit a Killing vector ξµ that is timelike at
infinity and acts as a generator of the event horizon. Assuming
that ϕ respects stationarity, ξµ∇µϕ = 0. Multiplying Eq. (2a)
by f,ϕ and integrating over a volume V yields

∫

V

d4x
√
−g

[

f,ϕ!ϕ + f 2
,ϕ(ϕ)G

]

= 0 . (4)

Integrating by parts and using the divergence theorem, we

                                                         Gauss-Bonnet invariant (total derivative)

second-order field equations => no Ostrogradski instability, could exist beyond small coupling limit

BHs have scalar hair

GR deviations appear at large curvature => no constraints from binary pulsars, need GW

fundamental physics motivation: low-energy effective string theory (Gross & Sloan ‘87 ) ,        

first terms in polynomial curvature expansion of a possibly renormalizable theory (Stelle ‘77 )

G = Rµ⌫↵�R
µ⌫↵� � 4Rµ⌫R

µ⌫ +R2

The simplest, well-behaved modification of the strong-field limit of gravity!

Different possible choices of the coupling function f(φ):

exponential:    f=e𝛼𝜑                 Einstein-dilaton Gauss-Bonnet (EdGB) gravity [string-inspired]
                       (Mignemi & Stewart ’93, Kanti et al. ’96, Pani & Cardoso ’09, Yunes & Stein ’11,  etc.)

linear:             f=𝛼𝜑               shift-symmetric Gauss-Bonnet gravity 
                                (Sotiriou & Zhou ‘14a, ‘14b, Barausse & Yagi ’15, Benkel et al. ’16, ’17)



Leonardo Gualtieri               Numerical Relativity Beyond General Relativity                Benasque, Spain               June 2018

ar
X

iv
:1

71
1.

02
08

0v
2 

 [g
r-

qc
]  

8 
N

ov
 2

01
7

Spontaneous scalarization of black holes and compact stars from a Gauss–Bonnet coupling

Hector O. Silva,1, 2, ∗ Jeremy Sakstein,3, † Leonardo Gualtieri,4, ‡ Thomas P. Sotiriou,5, 6, § and Emanuele Berti1, ¶

1Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA
2eXtreme Gravity Institute, Department of Physics, Montana State University, Bozeman, MT 59717 USA

3Center for Particle Cosmology, Department of Physics and Astronomy,
University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA

4Dipartimento di Fisica “Sapienza” Università di Roma & Sezione INFN Roma1, Piazzale Aldo Moro 5, 00185, Roma, Italy
5School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
6School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

(Dated: November 9, 2017)

We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss–Bonnet invariant
that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories
formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if
certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of
many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

Introduction. Gravitational wave observations allow us to
probe the structure of black holes (BHs) with unprecedented
accuracy. Hence, they can reveal the existence of new funda-
mental scalar fields [1, 2], provided that they leave an imprint
on BHs. However, no-hair theorems (see [3, 4] for reviews)
dictate that conventional scalar-tensor theories will have the
same stationary, asymptotically flat BH solutions as general
relativity (GR) [5–7]. In spherical symmetry [8] and slow
rotation [9, 10], this result extends to generalized scalar-tensor
theories, i.e. theories that exhibit derivative self-interactions
and derivative couplings between the scalar and curvature in-
variants, provided that the scalar respects shift symmetry.

One could still detect scalars in these theories through the
imprint they leave when they are excited [11, 12]. One can
also circumvent no-hair theorems by violating some of their
assumptions [13–16]. No-hair theorems also help single out
particularly interesting theories that have hairy BHs. A well-
studied example is the action

S =
1

2

∫

d4x
√
−g

[

R −
1

2
∇αϕ∇αϕ + f (ϕ)G

]

+ Sm[gµν,ψ] ,

(1)

where G ≡ RµνρσRµνρσ − 4RµνRµν
+ R2 is the Gauss-Bonnet

invariant. We use geometrical units with c = 8πG = 1 and
the mostly plus metric signature. The scalar field ϕ is coupled
to G , which has dimensions of length−4 (≡ L−4), through a
function f (ϕ), with dimensions L2. The matter fields ψ are
minimally coupled to the metric gµν through the action Sm.
We will refer to this class of theories as scalar-Gauss-Bonnet
(sGB) gravity. When f is exponential the theory is well-known
to admit hairy BHs [17], whereas a linear f yields the only
shift-symmetric theory with second-order field equations that
exhibits BH hair [9, 10] (despite the no-hair theorem of [8]).

The main purpose of this paper is to demonstrate that a new
subclass of theories, contained in (1), exhibits a particularly
interesting phenomenon: BH spontaneous scalarization. As
we demonstrate below, this subclass of theories generically
admits solutions where the scalar field is constant and the
metric satisfies Einstein’s equations. However, under certain

conditions these solutions are unstable, and solutions where
the scalar field in nontrivial are dynamically preferred. This
leads to hairy BHs only when the BH mass lies within certain
ranges. Compact stars in these theories also exhibit sponta-
neous scalarization. The mechanism resembles that proposed
by Damour and Esposito-Farèse [18], where there is a cou-
pling between ϕ and the trace of the stress-energy tensor, T .
However, there are important differences – most notably the
fact that the effect is present for BHs as well.

A no-hair theorem in sGB and how to evade it. We start by
identifying the class of theories in question. Varying (1) with
respect to ϕ and gµν yields

!ϕ = − f,ϕG , (2a)

Rµν −
1

2
gµνR = Tµν . (2b)

Here Tµν is the sum of the matter stress-energy tensor Tm
µν ≡

−(2/√−g)(δSm/δgµν), plus a contribution coming from the
variation of the ϕ-dependent part of the action with respect to
the metric (see e.g. [17]).

Eq. (2a) does not admit ϕ = constant solutions, unless

f,ϕ(ϕ0) = 0 , (3)

for some constant ϕ0. We consider Eq. (3) as an existence

condition for GR solutions and focus on theories that satisfy
it. This excludes the widely studied class of dilatonic theories
where f ∼ exp(ϕ) and the shift-symmetric f ∼ ϕ theory
discussed above [9, 10, 17].

Focus now on BH solutions that are asymptotically flat and
stationary. These admit a Killing vector ξµ that is timelike at
infinity and acts as a generator of the event horizon. Assuming
that ϕ respects stationarity, ξµ∇µϕ = 0. Multiplying Eq. (2a)
by f,ϕ and integrating over a volume V yields

∫

V

d4x
√
−g

[

f,ϕ!ϕ + f 2
,ϕ(ϕ)G

]

= 0 . (4)

Integrating by parts and using the divergence theorem, we

Why sGB gravity?

`

exponential:    f=𝛼e𝜑                 Einstein-dilaton Gauss-Bonnet (EdGB) gravity [string-inspired]
                       (Mignemi & Stewart ’93, Kanti et al. ’96, Pani & Cardoso ’09, Yunes & Stein ’11,  etc.)

linear:             f=𝛼𝜑               shift-symmetric Gauss-Bonnet gravity 
                                (Sotiriou & Zhou ‘14a, ‘14b, Barausse & Yagi ’15, Benkel et al. ’16, ’17)

  -  ζ = α/M2 dimensionless coupling

  - stationary BH solutions (Kanti et al. ‘96):   ζ < ζ max ~ 1     we do not have to require ζ << 1 

  - scalar field profile 𝜑~ Q/r        Q scalar charge:  BHs have hair!                   Q/M~ ζ

  - PN description of BH binary inspiral (Yagi et al. ’12 )
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Is sGB gravity ruled out?

Well-posedness: existence of a unique solution which depends continuously on initial data.
                         It requires that   

50 Vitor Cardoso, Leonardo Gualtieri, Carlos Herdeiro and Ulrich Sperhake

6.1.2 Well-posedness

The suitability of a given system of di↵erential equations for a numerical time evolution critically
depends on a continuous dependency of the solution on the initial data. This aspect is referred to
as well posedness of the IBVP and is discussed in great detail in Living Reviews articles and other
works [645, 674, 383, 427]. Here, we merely list the basic concepts and refer the interested reader
to these articles.

Consider for simplicity an initial-value problem in one space and one time dimension for a single
variable u(t, x) on an unbounded domain. Well-posedness requires a norm || · ||, i.e., a map from
the space of functions f(x) to the real numbers R, and a function F (t) independent of the initial
data such that

||�u(t, ·)||  F (t)||�u(0, ·)|| , (56)

where �u denotes a linear perturbation relative to a solution u0(t, x) [380]. We note that F (t)
may be a rapidly growing function, for example an exponential, so that well posedness represents
a necessary but not su�cient criterion for suitability of a numerical scheme.

Well posedness of formulations of the Einstein equations is typically studied in terms of the
hyperbolicity properties of the system in question. Hyperbolicity of a system of PDEs is often
defined in terms of the principal part, that is, the terms of the PDE which contain the highest-
order derivatives. We consider for simplicity a quasilinear first-order system for a set of variables
u(t, x)

@tu = P (t, x,u, @x)u . (57)

The system is called strongly hyperbolic if P is a smooth di↵erential operator and its associated
principal symbol is symmetrizeable [567]. For the special case of constant coe�cient systems this
definition simplifies to the requirement that the principal symbol has only imaginary eigenvalues
and a complete set of linearly independent eigenvectors. If linear independence of the eigenvectors
is not satisfied, the system is called weakly hyperbolic. For more complex systems of equations,
strong and weak hyperbolicity can be defined in a more general fashion [645, 567, 646, 674].

In our context, it is of particular importance that strong hyperbolicity is a necessary condition
for a well posed IBVP [741, 742]. The ADM equations (52) – (53), in contrast, have been shown
to be weakly but not strongly hyperbolic for fixed gauge [567]; likewise, a first-order reduction of
the ADM equations has been shown to be weakly hyperbolic [468]. These results strongly indicate
that the ADM formulation is not suitable for numerical evolutions of generic spacetimes.

A modification of the ADM equations which has been used with great success in NR is the
BSSN system [78, 695] which is the subject of the next section.

6.1.3 The BSSN equations

It is interesting to note that the BSSN formulation had been developed in the 1990s before a
comprehensive understanding of the hyperbolicity properties of the Einstein equations had been
obtained; it was only about a decade after its first numerical application that strong hyperbolicity
of the BSSN system [380] was demonstrated. We see here an example of how powerful a largely
empirical approach can be in the derivation of successful numerical methods. And yet, our un-
derstanding of the mathematical properties is of more than academic interest as we shall see in
Section 6.1.5 below when we discuss recent investigations of potential improvements of the BSSN
system.

The modification of the ADM equations which results in the BSSN formulation consists of a
trace split of the extrinsic curvature, a conformal decomposition of the spatial metric and of the
traceless part of the extrinsic curvature and the introduction of the contracted Christo↵el symbols
as independent variables. For generality, we will again write the definitions of the variables and

Living Reviews in Relativity
DOI 10.1007/lrr-2015-1

Strong hyperbolicity is a condition for well-posedness:  the principal part is diagonalisable.

1) Is sGB gravity well-posed?

For instance, DCS gravity (as a full theory) seems to be not strongly hyperbolic (Delsate et al., ‘15) 
so it should be considered as a truncation of a more fundamental theory (EFT approach)

Recently, it has been shown that sGB gravity is not strongly hyperbolic (Papallo & Reall ’17, Papallo ’17) …

Definition. Equation (19) is weakly hyperbolic if, and only if, all eigenvalues of M(t, x, ⇠i) are
real for any real ⇠i with ⇠i⇠i = 1. Equivalently, if (⇠0, ⇠i) is characteristic and ⇠i 6= 0 is real then ⇠0
is real.

Equation (19) is strongly hyperbolic if, and only if, there exists a positive definite Hermitian matrix
K(t, x, ⇠̂i) depending smoothly on t, x, ⇠̂i such that

K(t, x, ⇠̂i)M(t, x, ⇠̂i)K(t, x, ⇠̂i)
�1 = M(t, x, ⇠̂i)

† (34)

and a constant C > 0 such that C�1I  K(t, x, ⇠̂i)  CI for all t, x, ⇠̂i.

In this paper we will mainly be interested in showing that certain equations are not strongly
hyperbolic. We will do this by demonstrating that M(t, x, ⇠̂i) is not diagonalizable. Note that M is
determined by Pµ⌫ , i.e., by the principal symbol. So hyperbolicity depends only on the nature of the
second derivative terms in the equation. Furthermore, to demonstrate that M is not diagonalizable
it is sufficient to work at a single point in spacetime.

3 Lovelock theories

3.1 Equation of motion in harmonic gauge

In d > 4 spacetime dimensions, the equation of motion of a Lovelock theory of gravity is

Aab = 8⇡Tab, (35)

where Tab is the energy momentum tensor of matter and

Aa
b = Ga

b + ⇤�ab +
X

p�2

kp�
ac1...c2p
bd1...d2p

Rc1c2
d1d2 . . . Rc2p�1c2p

d2p�1d2p . (36)

We have assumed that the coefficient of the Einstein term is non-zero and normalized it in the
standard way. kp are constants and the antisymmetry ensures that the sum is finite (2p+ 1  d in
d dimensions). We will be considering the case of vacuum solutions of this theory so we set Tab = 0
henceforth.

To investigate hyperbolicity we linearize around a background solution gab, i.e. the metric is
gab + hab and we linearize in hab, writing

Aab[g + h] = Aab[g] +A
(1)
ab [h] + . . . (37)

so that the linearized equation of motion is

A
(1)
ab [h] = 0. (38)

For the Einstein equation (i.e. kp = 0), the resulting equation is strongly hyperbolic only if we
impose a suitable gauge condition. For the nonlinear equation, one can choose harmonic coordinates:

0 = g⌫⇢r⌫r⇢x
µ =

1p�g
@⌫

�p
�ggµ⌫

�
. (39)

9

but this was only shown in generalised harmonic gauge 

there is no reason to believe that the same applies in a BSSN-like formulation!

2) Is sGB gravity ruled out by GW observations?
GW170817 has shown that GWs and light travel with the same speed.

This sets bounds on several modified gravity theories, inclunding sGB gravity
(Ezquiaga & Zumalacarregui ’17, Baker et al. ’17, Sakstein & Jain ’17, Creminelli & Vernizzi ‘17)

sGB parameter
in Horndeski Lagrangian

cosmological parameter

“models such as Einstein-dilaton-Gauss-Bonnet that 
do not lead an accelerating universe, of interest for 
example for deviations detectable via black hole tests, 
are still allowed (Sakstein & Jain, ’17)”

Maybe!

No!

|↵T | =
����
c2 � c2T

c2

���� . 10�15
↵T / cGB

✓
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BH binaries in sGB gravity  -  first step: EFT approach

As a first step, we perform NR simulations of BBH  coalescences in an EFT framework
(analogue to that followed in Okounkova et al. ’17 for DCS gravity, see Okounkova’s talk)

The field equations

2

This theoretical constraint sets a bound

⇣ ⌘ ↵
GB

M2
< ⇣

max

(2)

where the threshold ⇣
max

depends on the specific sGB
theory; for instance, ⇣

max

' 0.619 for EdGB gravity [7],
⇣
max

⇠ 0.3 for shift-symmetric GB gravity [4], and so on.
When this bound is reached, the curvature singularity
hits the horizon [4], and the solution does not descrive
a BH anymore. In the case of rotating BHs, the bound
becomes stronger (at least, in the case of EdGB gravity,
where it has been shown [8] that ⇣

max

decreases as the
spin increases, and vanishes at extremality).

The strongest bound arising from Eq. 2 comes from
the mere existence of the lightest BH observed, because
↵
GB

< ⇣
max

M2  ⇣
max

M2
min

. Thus, the discovery of
J1655 � 40, with M ' 5.4M

�

, leads to ↵
GB

< 20M2
�

,
stronger than the observational contraint found in [2].
However, this reasoning does not apply to the class of
theories of found in [1, 5, 6], which predict the existence
of both Kerr BHs and “scalarized” BHs.

II. SETUP

A. Action and equations of motion

The action describing Einstein-dilaton Gauss–Bonnet
(EdGB) gravity involving a real, massless scalar field �
and in the absence of ordinary matter [LG: I’m won-
dering whether it would be more accurate to call
this simply GB gravity, being the dilaton case
only f(�) ⇠ e�... let’s think about that] [HW:
agreed. At the same time I don’t like inventing
tons of new names. Actually, we may have an
even stronger selling point: this modification can
be viewed as representative for all (even) higher
derivative couplings at this order in ↵GB in the
EFT. So any conclusions/constraints should be
valid for a more general class of theories – cour-
tesy of discussion with A. Tolley, C. de Rham
and T. Wiseman after my seminar today.] is
given by [3, 7, 9]

S =
1
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where (4)R is the four-dimensional Ricci scalar,  =
16⇡G, ↵GB is the dimensionful GB coupling constant
and f(�) is a function coupling the scalar field to the
GB invariant RGB

RGB =(4)R2 � 4 (4)R
ab

(4)Rab + (4)R
abcd

(4)Rabcd , (4)

where (4)R
abcd

and (4)R
ab

are the four dimensional Rie-
mann and Ricci tensor. In the following we will employ
geometric units G = 1 = c. We have introduced a col-
lective GB coupling constant ↵GB = ↵0c1, where ↵0 is

the Regge slope, g is a gauge coupling and c1 = 2, 1 for
bosonic or heterotic strings [3]. Typical specifications
for the scalar field function are a dilaton coupling of the
form f(�) = 1

8g2 e� [3, 10], or f(�) = � that appears in
the shift-symmetric version of the theory or in the small
coupling approximation [9]. Here, we will focus on the
former, and consider a vanishing scalar field potential
V (�) = 0.
Before deriving the field equations let us pause for a

moment and consider the various conventions for the cou-
pling constant. While we follow Ref. [3], it is useful to
compare to

• the living review by Yunes & Siemens [9] that uses
the same notation as Yagi et. al. [11]

YS =
1


, ↵YS =

2↵GB


, �YS =

1


; (5)

• the review on implications of the first gravitational
wave detections [12] as well as the work on obser-
vational constraints on EdGB gravity from x-ray
binaries [2]

YYP =
1


, ↵YYP =

2↵GB


; (6)

• and, finally, work on (no-)hair theorems in shift-
symmetric EdGB [13] or the formation of hairy
black holes [14]

M2
Pl

2
=
1


, ↵SZ = 2↵GB . (7)

Varying the action (3) with respect to the scalar field
� and metric gab yields their field equations

⇤� =� ↵GB

4
f 0(�)RGB , (8a)

G
ab

=� ↵GBGab

+
1

2
T (�)
ab

, (8b)

where f 0 ⌘ df/d�. The Einstein tensor is G
ab

=
(4)R

ab

� 1/2g
ab

(4)R, the canonical scalar field energy-
momentum tensor is

T (�)
ab

=r
a

�r
b

�� 1

2
g
ab

rc�r
c

� , (9)

and the modification due to the GB term is [3, 7]
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where ⇤Rab

cd

= ✏abef (4)R
efcd

is the dual Riemann ten-
sor, and ✏abcd is totally anti-symmetric Levi-Civita sym-
bol.
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are expanded as:
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Writing out the latter quantity explicitly gives
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We develop the scalar field energy-momentum tensor (9)
as
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⇠
X

k
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(✏�)kT (k)
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. (18)

With �(0) = 0 this results in
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=0 , T (1)
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= 0 , (19)

whereas the first non-vanishing contribution
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will be relevant to calculate the scalar-field energy-
momentum flux.
Gauss-Bonnet correction and invariant: Both
quantities enter the field equations (14) of order ✏k at
one order lower, so here we only consider their O

�
✏0
�

components. The Gauss-Bonnet invariant is computed
from

R(0)
GB =Rabcd

(0) R(0)
abcd

� 4R(0)
ab

Rab

(0) +R2
(0) , (21)

that is from the curvature of the background GR space-
time. Because the Gauss-Bonnet correction (10) depends
on both the metric and scalar field, and in particular

G(0)
ab

= G(0)
ab

(g,�(0)), Eq. (16) implies

G(0)
ab

=0 . (22)

In order to estimate the correction’s contribution to the
energy-momentum content of the system at next order
we provide

G(1)
ab

=2✏edfgg(0)
c(ag

(0)
b)dr

(0)
h

h
f 0

(0)
⇤Rch

(0)fg@e�
(1)

i
. (23)

Coupling functions: Among the most common choices
for the coupling function f(�) are a dilaton coupling,
i.e. f(�) ⇠ e�, in string-inspired versions of EdGB [3]
or f(�) = � in the shift-symmetric version of the the-
ory [13]. More recently, it has been realised that a cou-
pling of the form f(�) ⇠ �2 or f(�) ⇠ exp[�2] can
yield interesting phenomena such as black hole scalariza-
tion [1, 5, 6]. Since this type of coupling has f 0(�) = 0
by construction, it would require a modification to the
scalar equation of motion. Instead, here we concentrate
on the former class for which f 0(�) 6= 0. In particular, we
have f 0

(0) = 1, whereas f 0

(1) = 0 (shiftsymmetric model)

or f 0

(1) = �(1) (dilaton coupling).

4. First order

Using solution (16), and Eqs. (19) and (22), the first
order equations of motion (14b) reduce to

G(1)
ab

= 0 , ⇤(0)�(1) = �R(0)
GB , (24)

where ⇤(0) and R(0)
GB are, respectively, the d’Alembertian

and Gauss-Bonnet invariant evaluated from the back-
ground metric g(0)

ab

. G(1)
ab

is the Einstein tensor acting on

h(1)
ab

with derivatives constructed from g(0)
ab

. Hence, the

metric itself is not deformed and it is safe to set h(1)
ab

= 0.
As indicated in Eq. (24) the scalar field �(1) is sourced
by the curvature of the background spacetime and, there-
fore, develops a nontrivial profile. Then, the solution at
this order is

⇣
h(1)
ab

,�(1)
⌘
=
⇣
0,�(1)

⌘
, (25)

where �(1) can be solved for analytically in certain
approximations discussed below or numerically. Since
Eqs. (24) are, to leading order, the Einstein-scalar field
equations sourced by tensors computed from (gGR

ab

, 0),
they can be cast into a well-posed initial value formula-
tion.

5. Second order

In order to judge the validity of our EFT approach and
to estimate backreaction e↵ects on the system’s dynamics
we inspect the field equations at order O

�
✏2
�

G(2)
ab

=� 8G(1)
ab

+
1

2
T (2)
ab

, (26a)

⇤(0)�(2) =� 2f 0

(1)R
(0)
GB . (26b)

Note, that the right-handside of (26a) defines an e↵ective
energy-momentum tensor

T e↵
ab

=T (2)
ab

� 16G(1)
ab

, (27)

where T (2)
ab

and G(1)
ab

have been definded in Eqs. (20)
and (23), respectively.

6. Summary

In summary, the set of field equations (up to O
�
✏1
�
)

that we evolve numerically are

G(0)
ab

=0 , ⇤(0)�(1) = �R(0)
GB . (28)

In practise we evolve the scalar field simultaneously with
the background, i.e., GR spacetime that is set up either
as a single rotating black hole or a black-hole binary. In
the following we will drop the superscripts (0), (1) and

keep in mind that � ⌘ �(1) and g
ab

⌘ g(0)
ab

= gGR
ab

.Scalar field in a BBH background sourced by RGB, without backreaction. 

We expand the action, and then the field equations, in powers of  ζ = αGB/M2 <<1  
(note that sGB viable also for ζ ~1, see later).  We also assume ϕ(0)=0 (no-hair)

� =
1X

k=0

1

k!
⇣k�(k) = ⇣�(1) + . . . gab = g(0)ab +

1X

k=1

1

k!
⇣kh(k)

ab = g(0)ab +
⇣2

2
h(2)
ab

We chose EdGB gravity,  f ’=e𝜑=1+…
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With this approach, well-posedness automatically guaranteed
(at any order, it is inherited from well-posedness of equations at 0-th order)

BH binaries in sGB gravity  -  first step: EFT approach

We evolve the scalar field 
simultaneously 

with the BBH background 
in the same BSSN framework.
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BH binaries in sGB gravity  -  first step: EFT approach

Scalar radiation extracted at r=40M:

Black-hole binaries in EdGB gravity

Scalar radiation measured at r
ex

/M = 40

q = 1
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• excitation of l = m scalar radiation sourced by curvature / orbital dynamics

• post-merger ringdown

M!�11 = 0.37� ı0.09 (M!�,ana11 = 0.377� ı0.089)

M!�22 = 0.52� ı0.08 (M!�,ana22 = 0.651� ı0.088;M! 4,ana
22 = 0.528� ı0.081)

H. Witek (KCL) 14 / 17

• excitation of scalar radiation sourced by curvature / orbital dynamics

• post-merger ringdown:  as expected, the scalar field oscillates with a combination of  
GR quasi-normal modes of scalar and gravitational radiation

   (preliminary: l=m=1has the frequency of the scalar l=m=1 QNM,
                      l=m=2 has both the frequencies of scalar and gravitational l=m=2 QNMs
   but caution: frequency extraction difficult due to dependency on initial ringdown time)
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BH binaries in sGB gravity  -  first step: EFT approach

Energy flux: preliminary results - work in progress

Energy fluxes for q = 1 (preliminary)

• measure gravitational and scalar energy flux @ r

ex

= 100M

H. Witek (KCL) 17 / 17

It should allow to estimate, even in this first-order computation,
how much the GR deviation affects the orbital motion

and thus the magnitude of the effects on the GW phase,
and the detectability from interferometric detectors!
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BH binaries in sGB gravity  -  second step: fully coupled equations

This is a long-term project, just at the beginning!

We do not assume small coupling, we do not expand metric/scalar field, 
and evolve the fully coupled equations of metric + scalar field  

3+1 decomposition: �ab = gab + nanb ds

2 = �(↵2 � �

a
�a)dt

2 + �adtdx
a + �abdx

a
dx

b

Ln�ab = �2Kab = �2

✓
Aab �

1

3
�abK

◆

K� = �Ln�variables: �, �ab,K�,K,Aab

Constraints (energy and momentum) involve metric and scalar field

Dynamical evolution equations: by defining auxiliary quantities 
HGR = R�KabK

ab +K2

EGR
ab = R<ab> �AacA

c
b +

1

3
(KAab + �abA

2)

Cab = DaDbf(�)�KabLnf(�) ; C = �abCab
0

@
1 �2f 0HGR 8↵GBf 0EGRab

2↵GBHGR 6� 16↵GBC 16↵GBC<ab>

8↵GBf 0EGR
cd �16↵GBC<cd> �a<c�

b
d>(1� 8↵GBC)� 16�a<cCb

d>

1

A

0

@
LnK�
1
6LnK

1
8LnA<ab>

1

A =

0

@
S�

SK

S<cd>

1

A

This matrix has to be inverted to get a first-order in time formulation (work in progress…)

Future steps:  BSSN-like formulation, gauge choice, numerical implementation…
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BH binaries in sGB gravity  -  second step: fully coupled equations

0

@
1 �2f 0HGR 8↵GBf 0EGRab

2↵GBHGR 6� 16↵GBC 16↵GBC<ab>

8↵GBf 0EGR
cd �16↵GBC<cd> �a<c�

b
d>(1� 8↵GBC)� 16�a<cCb

d>

1

A

0

@
LnK�
1
6LnK

1
8LnA<ab>

1

A =

0

@
S�

SK

S<cd>

1

A

A brief comment on the well-posedness

The result in Delsate et al., 15 is based on the fact that in the DCS case the matrix
(more precisely, the part involving the time derivative of the traceless extrinsic curvature)

is degenerate: 

- The former is obviously degenerate due to the presence of the Levi-Civita tensor:

- The second is non-degenerate (at least, for small enough coupling constant)

�
�a<c✏

be
d> De�

�
Dc�Dd� ⌘ 0

DCS: 

sGB: · · ·+
�
�a<c�

b
d>(1� 8↵GBC)� 16↵GB�

a
<cCb

d>

�
LnA<ab> = S<cd>

· · ·+ ↵CS

�
�a<c✏

be
d> De�

�
LnX<ab> = S<cd>

This is an indication that (non-EFT) sGB gravity has not an evident ill-posedness such as DCS gravity 
but of course all this is very, very preliminar!
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Conclusions

Developing NR techniques and performing NR simulations of modified gravity theories such 
as quadratic gravity theories is challenging but rewarding

 With the easiest approach one simply evolves a scalar field equation in a GR BBH background.         
This is a necessary first step before addressing the fully coupled problem. Still, this approach gives 
order-of-magnitude estimates of the orbital motion modifications  and thus of the detectability.

 For the fully coupled problem we are just at the beginning. Some preliminary indication suggest that 
the mechnisms immediately leading to ill-posedness in DCS gravity are not present in sGB gravity.

    These are just preliminary and partical indications: a systematic study of well-posedness of sGB 
    gravity is still to be done

 sGB gravity is a natural candidate to perform these computations. Recent claims of it ill-posedness 
and of tension with GW observational data only refer to a specific gauge/formulation,  and to 
specific applications of the theory.  sGB still stands as a viable and promising GR modification


