- Nicolas Yunes
- eXtreme Gravity Institute Montana State University

Numerical Relativity Beyond GR, Benasque, Spain June 8th, 2018

Tests of Gravity with LISA and 3rd Generation Detectors

Who are you again?

Who are you again?

What can we learn about theoretical physics from future GW observations?

026	2030	2034

2018

2022

aLIGO

026	2030	2034

2018

2022

aLIGO A+

026	2030	2034

2018

2022

aLIGO A+

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO

2026	2030	2034

2018

2022

aLIGO A+

improved quantum noise improved thermal coating increased range to 140% wrt aLIGO 2026

2030

2034

Voyager

2018 2022 aLIGO A+improved quantum noise

improved thermal coating increased range to 140% wrt aLIGO

silicon mirrors and suspensions low temperature (120K) increased range to 200% wrt aLIGO

2026

2030

2034

Voyager

mild-to-moderate improvement of constraints

2026

2030

2034

Voyager

silicon mirrors and suspensions low temperature (120K) increased range to 200% wrt aLIGO

Example: Ground-based constraints on Graviton

 $\frac{v_g^2}{c^2} = 1 - \frac{m_g^2 c^4}{E^2}$

 $\tilde{h}(f) = \tilde{h}_{GR}(f) \left(1 + \alpha f^a\right) e^{i\beta f^b}$

$$\beta = \pi^2 \frac{D \mathcal{M}_z}{1+z} m_g^2$$

Example: Ground-based constraints on Graviton

Current Bound

Instrument

Example: Ground-based constraints on Graviton

Instrument

fractional improvement of constraints

2026

2030

2034

Voyager

silicon mirrors and suspensions low temperature (120K) increased range to 200% wrt aLIGO

fractional improvement of constraints

2026

2030

2034

Voyager

silicon mirrors and suspensions low temperature (120K) increased range to 200% wrt aLIGO

Cosmic Explorer

fractional improvement of constraints

2030	2034
Voyager	Cos Expl
n mirrors and suspensions w temperature (120K) d range to 200% wrt aLIGO	Eins Teles

fractional improvement of constraints

.026	2030	2034
Voyager mirrors and susper temperature (120	ensions)K)	Cos Expl
d range to 200% w	rt aLIGO	Eins Teles

fractional improvement of

.026	2030	2034
Voyager mirrors and susp v temperature (12 d range to 200% v	ensions 0K) vrt aLIGO	Cos Expl Eins Teles
constraints		

New Tests

Case Study: Dipole Radiation

$$\begin{split} \dot{E}_{\rm GW} &= \dot{E}_{\rm GR} \left[1 + B \left(\frac{Gm}{r_{12}c^2} \right)^{-1} \right] \\ \tilde{h}(f) &= \tilde{h}_{GR}(f) \left(1 + \alpha f^a \right) e^{i\beta f^b} \\ \beta &= -\frac{3}{224} \eta^{2/5} B \end{split}$$

[Barausse, Yunes, Chamberlain, PRL '16]

Case Study: Dipole Radiation

$$\begin{split} \dot{E}_{\rm GW} &= \dot{E}_{\rm GR} \left[1 + B \left(\frac{Gm}{r_{12}c^2} \right)^{-1} \right] \\ \tilde{h}(f) &= \tilde{h}_{GR}(f) \left(1 + \alpha f^a \right) e^{i\beta f^b} \\ \beta &= -\frac{3}{224} \eta^{2/5} B \end{split}$$

Case Study: Dipole Radiation

$$\begin{split} \dot{E}_{\rm GW} &= \dot{E}_{\rm GR} \left[1 + B \left(\frac{Gm}{r_{12}c^2} \right)^{-1} \right] \\ \tilde{h}(f) &= \tilde{h}_{GR}(f) \left(1 + \alpha f^a \right) e^{i\beta f^b} \\ \beta &= -\frac{3}{224} \eta^{2/5} B \end{split}$$

[Barausse, Yunes, Chamberlain, PRL '16]

Case Study: Dipole Radiation

$$\dot{E}_{\rm GW} = \dot{E}_{\rm GR} \left[1 + B \left(\frac{Gm}{r_{12}c^2} \right)^{-1} \right]$$
$$\tilde{h}(f) = \tilde{h}_{GR}(f) \left(1 + \alpha f^a \right) e^{i\beta f^b}$$

$$\beta = -\frac{3}{224}\eta^{2/5}B$$

10⁶ times better than current bounds!!

[Barausse, Yunes, Chamberlain, PRL '16]

New how? Example: Precision Tests

New how? Example: Precision Tests

Instrument

New how? Example: Precision Tests

Instrument

New Sources

Final State Conjecture through QNMs, graviton mass, modified dispersion.

Final State Conjecture through QNMs, graviton mass, modified dispersion.

Kerr Hypothesis via GW geodesy, strong equivalence principle, chaos.

Final State Conjecture through QNMs, graviton mass, modified dispersion.

Kerr Hypothesis via GW geodesy, strong equivalence principle, chaos.

Cosmological modified gravity, cosmic strings?

Ces	SMBH Mergers F	inal State Conjectur
Sour	EMRIs Kerr Hyj	pothesis via GW geo
New	Stochastic Backgrou	nds Cosmological

New Data

re through QNMs, graviton mass, modified dispersion.

desy, strong equivalence principle, chaos.

modified gravity, cosmic strings?

Ces	SMBH Mergers Final S	State Conjectur
Sour	EMRIs Kerr Hypothe	esis via GW geo
New	Stochastic Backgrounds	Cosmological

New Data

Precision tests of extreme gravity

- re through QNMs, graviton mass, modified dispersion.
- desy, strong equivalence principle, chaos.
- I modified gravity, cosmic strings?

Ces	SMBH Mergers	Final S	State Conjectur
Sour	EMRIs Kerr	Hypothe	esis via GW geo
New	Stochastic Backg	rounds	Cosmological

- re through QNMs, graviton mass, modified dispersion.
- desy, strong equivalence principle, chaos.
- I modified gravity, cosmic strings?

- **Cosmological modified gravity, cosmic strings ?**

Ces	SMBH Mergers	Final State Conjectur
Sour	EMRIs Kerr H	ypothesis via GW geo
New	Stochastic Backgro	ounds Cosmological

- e through QNMs, graviton mass, modified dispersion.
- desy, strong equivalence principle, chaos.
- modified gravity, cosmic strings?

- **Cosmological modified gravity, cosmic strings ? Dipole emission, variability of fundamental constants.**

Ces	SMBH Mergers		Final S	State Conjectur
Sour	EMRIs	Kerr H	ypothe	sis via GW geo
New	Stochastic	Backgro	ounds	Cosmological

- e through QNMs, graviton mass, modified dispersion.
- desy, strong equivalence principle, chaos.
- I modified gravity, cosmic strings?

- **Cosmological modified gravity, cosmic strings**? **Dipole emission, variability of fundamental constants. Connection to cosmological modified theories?**

BH Mergers

Stochastic Backgrounds

Much Higher SNR

Much Larger DL

Multi-Band Sources

Yunes

Much Higher SNR

Much Larger DL

Multi-Band Sources

The whole NR enchilada in MG (spin-precessing + eccentric + higher modes)

Much Higher SNR

Much Larger DL

Multi-Band Sources

The whole NR enchilada in MG (spin-precessing + eccentric + higher modes) The whole PN enchilada in MG (spin-precessing + eccentric + intermediate-mass?)

Stochastic Backgrounds

ources

ew

Much Higher SNR

Much Larger DL

Multi-Band Sources

- The whole NR enchilada in MG (spin-precessing + eccentric + higher modes) The whole PN enchilada in MG (spin-precessing + eccentric + intermediate-mass?)
- NR simulations at extreme mass ratios for validation in MG (impossible? new methods?)

The whole NR enchilada in MG (spin-precessing + eccentric + higher modes) The whole PN enchilada in MG (spin-precessing + eccentric + intermediate-mass?)

NR simulations at extreme mass ratios for validation in MG (impossible? new methods?) Self-force "simulations" to 2nd order in perturbation theory in MG.

Stochastic Backgrounds

ources

ew

Much Higher SNR

Much Larger DL

Multi-Band Sources

ass?) nods?)

The whole NR enchilada in MG (spin-precessing + eccentric + higher modes) The whole PN enchilada in MG (spin-precessing + eccentric + intermediate-mass?)

ources

ew

BH Mergers

NR simulations at extreme mass ratios for validation in MG (impossible? new methods?) Self-force "simulations" to 2nd order in perturbation theory in MG.

Stochastic Backgrounds

?? (I don't know)

BH Mergers

Stochastic Backgrounds

?? (I don't know)

ources

ew

Much Higher SNR Much Larger DL

Multi-Band Sources

- The whole NR enchilada in MG (spin-precessing + eccentric + higher modes) The whole PN enchilada in MG (spin-precessing + eccentric + intermediate-mass?) NR simulations at extreme mass ratios for validation in MG (impossible? new methods?)
- Self-force "simulations" to 2nd order in perturbation theory in MG.

Much higher precision (even for higher modes) for full exploitation

BH Mergers

Self-force "simulations" to 2nd order in perturbation theory in MG.

Stochastic Backgrounds

?? (I don't know)

ources

ew

Much Higher SNR Much Larger DL

Multi-Band Sources

Nothing because it scales out

- The whole NR enchilada in MG (spin-precessing + eccentric + higher modes) The whole PN enchilada in MG (spin-precessing + eccentric + intermediate-mass?) NR simulations at extreme mass ratios for validation in MG (impossible? new methods?)

- **Much higher precision (even for higher modes) for full exploitation**

ources

ew

BH Mergers

Self-force "simulations" to 2nd order in perturbation theory in MG.

Stochastic Backgrounds

?? (I don't know)

- The whole NR enchilada in MG (spin-precessing + eccentric + higher modes) The whole PN enchilada in MG (spin-precessing + eccentric + intermediate-mass?) NR simulations at extreme mass ratios for validation in MG (impossible? new methods?)

- Much higher precision (even for higher modes) for full exploitation

 - Two stage-analysis (PN for early LISA inspiral —> NR for LIGO merger)

?? (I don't know)

Many parameters & some (high spin, high eccentricity) very challenging.

SMBH Enchilada	Many parameters & MG typically harder
EMRIs	
Stochastic Backgro	unds ?? (I don't kn
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

some (high spin, high eccentricity) very challenging. r than GR (instabilities, effective theories, etc)

OW)

SM	SMBH Enchilada	Many parameters & MG typically harder
New So	EMRIs Compari	son to self-force requi
	Stochastic Backgro	unds ?? (I don't kr
ata	High SNR/High Pre	ecision
New D	Much Larger DL	Nothing because it
r 1 0	WIUITI-Band Source	S

k some (high spin, high eccentricity) very challenging. r than GR (instabilities, effective theories, etc) ires extreme runs (evolution T ~ 1/q^(high power))

now)

scales out

Many parameters & some (high spin, high eccentricity) very challenging. MG typically harder than GR (instabilities, effective theories, etc) Comparison to self-force requires extreme runs (evolution $T \sim 1/q^{(high power)}$) **Modeling chaotic resonances requires very long simulations**

Stochastic Backgrounds

?? (I don't know)

Effective Dephasing scales as 1/SNR, so if the SNR is 1000...

Sources

New

EMRIs

Many parameters & some (high spin, high eccentricity) very challenging. MG typically harder than GR (instabilities, effective theories, etc) Comparison to self-force requires extreme runs (evolution $T \sim 1/q^{(high power)}$) **Modeling chaotic resonances requires very long simulations**

Many parameters & some (high spin, high eccentricity) very challenging. **SMBH Enchilada** MG typically harder than GR (instabilities, effective theories, etc) Comparison to self-force requires extreme runs (evolution $T \sim 1/q^{(high power)}$) **Modeling chaotic resonances requires very long simulations**

Stochastic Backgrounds

Sources

New

EMRIs

?? (I don't know)

Effective Dephasing scales as 1/SNR, so if the SNR is 1000... **High SNR/High Precision** ew Data Mismatch requirement scales as 1/SNR², so even worse... **Much Larger DL** Nothing because it scales out Z **Multi-Band Sources**

Many parameters & some (high spin, high eccentricity) very challenging. **SMBH Enchilada** MG typically harder than GR (instabilities, effective theories, etc) Comparison to self-force requires extreme runs (evolution $T \sim 1/q^{(high power)}$) **Modeling chaotic resonances requires very long simulations**

Stochastic Backgrounds

Sources

New

EMRIs

?? (I don't know)

Effective Dephasing scales as 1/SNR, so if the SNR is 1000... **High SNR/High Precision** ew Data Mismatch requirement scales as 1/SNR², so even worse... **Much Larger DL** Nothing because it scales out Z Intermediate mass-ratio inspiral modeling... **Multi-Band Sources**

<u>3G Detectors Will Allow for New Tests of GR</u>

(precision tests, new sources, new effects)

<u>3G Detectors Will Allow for New Tests of GR</u>

(precision tests, new sources, new effects)

Tons Of New Simulations (And Analytics!) Will Be Required (spin-precessing, eccentric, different mass ratios)

<u>3G Detectors Will Allow for New Tests of GR</u>

(precision tests, new sources, new effects)

Tons Of New Simulations (And Analytics!) Will Be Required (spin-precessing, eccentric, different mass ratios)

The Challenges Are Daunting But Not Unsurmountable (100x more precision, much longer simulations, effective theories)

<u>3G Detectors Will Allow for New Tests of GR</u>

(precision tests, new sources, new effects)

Tons Of New Simulations (And Analytics!) Will Be Required (spin-precessing, eccentric, different mass ratios)

The Challenges Are Daunting But Not Unsurmountable (100x more precision, much longer simulations, effective theories)

Important Topics I've Left Out:

Data analysis implementations? Control over systematic errors in parameter estimation? etc...

<u>3G Detectors Will Allow for New Tests of GR</u>

(precision tests, new sources, new effects)

Tons Of New Simulations (And Analytics!) Will Be Required (spin-precessing, eccentric, different mass ratios)

The Challenges Are Daunting But Not Unsurmountable (100x more precision, much longer simulations, effective theories)

Important Topics I've Left Out:

Data analysis implementations? Control over systematic errors in parameter estimation? etc...

Thank You

