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What can we learn about theoretical physics  
from future GW observations?
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The Challenges Are Daunting But Not Unsurmountable 
(100x more precision, much longer simulations, effective theories)

3G Detectors Will Allow for New Tests of GR 
(precision tests, new sources, new effects)

Tons Of New Simulations (And Analytics!) Will Be Required 
(spin-precessing, eccentric, different mass ratios)

If it bleeds,  
can we kill it?

Important Topics I’ve Left Out:  
Data analysis implementations?  
Control over systematic errors in parameter estimation? etc…
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