N⁶-methylation of adenine in box C/D snoRNA : regulation of RNP assembly

Lin Huang David MJ Lilley Lab Dundee University, UK

The k-turn motif - structure

The G•A pairs

The key hydrogen bonds of a standard k-turn

The ubiquitous functions of k-turns

The k-turn folding : three processes

Folding of k-turns is induced by metal ions

Kinking of K-turn RNA induced by binding of Mg²⁺ ions Transition fits two-state behavior

Terry Goody

The structure of the complex of L7Ae bound to Kt-7

N⁶-methylation of adenine in box C/D snoRNA :

regulation of RNP assembly

N⁶-methylation of adenine in RNA

N⁶-methylation of adenine is the most common modification in RNA

How is N⁶mA expressed ?

- 1) A direct effect on local RNA structure
- 2) Recognition by specific binding proteins

How is N⁶mA expressed ?

1) A direct effect on local RNA structure

2) Recognition by specific binding proteins

N⁶-methylation of adenine is tolerated in Watson-Crick A-U basepair

Huang, Ashraf & Lilley EMBO rep 18, 1631-1645 (2017)

 $2F_{o}$ - F_{c} contoured at 1.2σ

N⁶-methylation of adenine is tolerated in Watson-Crick G-A basepair

N⁶-methylation of adenine is NOT tolerated in sugar-Hoogsteen G-A basepair

Huang, Ashraf & Lilley EMBO rep 18, 1631-1645 (2017)

N⁶-methylation of adenine is NOT tolerated in sugar-Hoogsteen G-A basepair

N⁶-methylation of adenine disrupts sugar-Hoogsteen G-A basepair

N⁶-methylation of adenine disrupts sugar-Hoogsteen G-A basepair

Huang, Ashraf & Lilley EMBO rep 18, 1631-1645 (2017)

N⁶-methylation of adenine causes steric clash in sugar-Hoogsteen G-A basepair

Huang, Ashraf & Lilley EMBO rep 18, 1631-1645 (2017)

Conclusion : N⁶-methylation of adenine is tolerated in Watson-Crick pairs

but disrupts sugar-Hoogsteen sheared G•A pairs

The G•A pairs are the core of k-turn structure

Effect of N⁶-methylation of adenine on the ion-induced folding of Kt-7

Saira Ashraf

Effect of N⁶-methylation of adenine on the ion-induced folding of Kt-7

Saira Ashraf

Effect of N⁶-methylation of adenine on the ion-induced folding of Kt-7

Saira Ashraf

The k-turn motif

The k-turn motif

《kturn》结构基序

N6mA methyl transferase consensus sequence

Box C/D snoRNP : site-specific O2' methylation

Some snoRNP sequences have a N⁶A methylation sequence

Potential methylation sites in box C/D k-turn sequences

If -1n = C, it creates GAC methylation target on lower strand

Potential methylation sites in box C/D k-turn sequences

If -1n = C, it creates GAC methylation target on lower strand

In humans, how frequently is this C?

And how often is it the A1n methylated ?

Data base mining

snoRNA box C/D, C'/D'

snoRNABase and snOPY

27 have GAC methylation sequence

Human box C/D RNA subject to A1N N⁶-methylation identified in RMBase

	boxC/D		boxC'/D'
U13 SNORD13	L1L2 L3 -1b CGU 1b 2b 8b 5' UGAG GAUGA ○ A ♥ ○ 3' GUCC	U62A SNORD62A	S'AGGG AGAU IIII AGAGA 3'UCCC — AGUCU
U46/U40 SNORD46	GGU 5' GUAG GAUGA 拾╂०।० 3' UGUC — AGUCA	U57 SNORD57	AUG 5'AGA GAGGC 110 AUIO 3'UCC — AGUCC
U48 SNORD48	GAU 5' GU GAUGA 1 ∱₹○ 3' CC — AGUCU	U29 SNORD29	AGU C GAAAA 3' A ∱┇I○I G _{C C} AGUAU 5'
U101 SNORD101	AAU 5' <mark>GUUUG</mark> GAUGA 	U41 SNORD41	U U GAUGUGG 3' G Alooo U _C Agugucc 5'
mgh28S-2049 SNORD5	5' UUCA GAUGA 00 A GOUGA 3' AGAC — AGUCU	snR39B SNORD2	AAU G ABAGA 8' G ABII0 U _{C C} AGUCA 5'
HBII-166 SNORD67	5' GUGAG AGU ↑↑↓00 3' CACUC — AGUCU	U44 SNORD44	CAU A GAAGG ° A ∱₹IIo G <mark>U C</mark> AGUCG 5′
HBII-239 SNORD71	5 [°] UGUUG GAG 		
HBII-289 SNORD89	AAU 5'UGAGG GAUGA ≵Ç○ 3'ACGCC — AGUCU		

The methylation signals are conserved

Sequence alignment for SNORD71

Conservation of -1n sequences (% C) for box C/D where -1n = C in humans

Huang, Ashraf & Lilley EMBO rep 18, 1631-1645 (2017)

A1n N⁶-methylation blocks folding/binding of the k-turn

Effect of N⁶A-methylation on 15.5 kD protein binding to box C/D

BINDING

U13

box C/D

5' AGCGUGAUG

3' ()(

AGUC

1n

Effect of N⁶A-methylation on 15.5 kD protein binding to box C/D

Effect of N⁶A-methylation on 15.5 kD protein binding to box C/D

Box C/D snoRNP assembly

N⁶A methylation in the human signal recognition particle Alu domain

Methylation in the human signal recognition particle RNA

Methylation in the human signal recognition particle RNA

Huang, Ashraf & Lilley EMBO rep 18, 1631-1645 (2017)

Methylation in the human signal recognition particle RNA

N⁶A methylation in human Alu elements

N⁶-methylation of Alu sequences

gene	mod ID	xsome	position	support no	sequence (N ⁶ meA)
srpRNA	m6A_site_38024	chr14	50329278	14	AGCCTGAGCAACATAGCGAGACCCCGTCTCTTTTGCCCCCC
AluJo	m6A_site_12507	chr1	214372362	5	GCCTGAGCAACATAGCGAGACCCCGTCTCTAAAACAAAAA
AluSp	m6A_site_9026	chr1	154184358	4	GCCTGGGCAACAAAAGTGAAACTCTGTCTCAAAAAAAAAA
FAM	m6A_site_31320	chr12	76858065	4	AGCCTGAGCAACATAGTGAGACCCTGTCTCTAAAAAGCAAC
AluJb	m6A_site_32596	chr12	112742257	4	AGCCTGGGCAACATAGCGAGACCCCGTCTCTGCAAAAAAAT
AluJr	m6A_site_119490) chr7	70342837	4	AGCCTGAGCAACATAGCGAGACCCCGTCTCTACAAAAACTA
AluSc	m6A_site_134766	3 chr9	139728960	4	TCCAGCCTGGACAGAGTGAGACTCCGTCTCCAAAAAAAAA
AluJr	m6A_site_30705	chr12	58271974	3	AGCCTGAGCAACATAGCGAGACCCCGTCTCTACAAAAAAAA
AluSx3	m6A_site_30910	chr12	66517102	3	AGCCTGGCTAATACAGTGAAACCCCATCTCTACTAAAAATA
AluSz6	m6A_site_40909	chr14	104057184	3	AGCCTGGAAGACCAAACGAGACTCTGTATCAAAAAATAATA
AluSz	m6A_site_62849	chr19	2342640	3	AGCCTGGGTGACAGAGTGAGACTCCATCTCAAAAACAAAAT
AluSz	m6A_site_64656	chr19	12986232	3	AGCCTGGGTGACAGAATGAGACTCTGTGTCAAAAAAAAAA
BC200	m6A_site_139606	∂ chrX	138802845	1	TGCCTGGGCAATATAGCGAGACCCCGTTCTCCAGAAAAAGG

RMBase : Sun et al Nucleic Acids res 44, D259 (2016).

Summary

- N⁶mA is tolerated in Watson-Crick basepairs, but prevents the formation of *trans* Hoogsteen-sugar A•G basepairs.
- A sub-set of human box C/D snoRNA species have target GAC sequences that result in the formation of N⁶-methyladenine at a key *trans* Hoogsteen-sugar A•G basepair, of which half are methylated *in vivo*.
- The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5 kDa protein and the induced folding of the RNA. Thus the assembly of the box C/D snoRNP can be regulated by RNA methylation at its critical first stage.
- More generally, N⁶-methylation of adenine occurs at sheared A·G basepairs involved in tertiary contacts in the human signal recognition particle RNA and related Alu retrotransposon RNA species.
- N⁶-methylation at A•G basepairs is probably a general method of controlling conformation and RNP assembly in cellular RNA.

CR-UK Nucleic Acid Structure Research Group

Jia Wang

Saira Ashraf

Tim Wilson

David Lilley

http://www.dundee.ac.uk/biocentre/nasg/index.php

Thanks!