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Covariation in sequence alighments

Multiple sequence alignment (MSA):

CSGKHSYYYFNSANQQCETFVYGGCLGN
CTGFTKKWY FDVDRNRCEEFQYGGCYGT
CTNYTPRWFFNSQTGQCEQFAYGSCGGN
CGPGVFKYHYNPQTQECESFEYLGCDGN
CPGA HDPRTKKCTPFTELGCGGN
CQDILTRWYFDSQKHQCRAFLYSGCRGN
CSPYLRRYFFNRTTEKCVLFIPERCEKD

fi(A) N f;(B)

f/j(Al B)

Pairwise Correlation Matrix: ~ C;(A,B) =f,(A,B) - f(A) f(B)

NB: proteins: tens to hundreds amino acids = nb of entries: millions to hundreds of millions
alignments: thousands to tens of thousands of sequences



What to do with the pairwise correlation matrix?

21 xL

C,{A,B) = f,(A,B)-f(A)f(B) =

Gmmmmmm

What can we do with this matrix?

1. Look for collective modes:

e Extract dominant directions
(Principal Component Analysis)

e Clustering of sites in low-dimensional space reveals
groups of functionally co-evolving residues

[Russ et al, Nature 2005]
[Halabi, Rivoire, Leibler, Ranganathan, Cell 2009]
[De Juan, Pazos, Valencia, Nat Rev Gen 2013]



What to do with the pairwise correlation matrix?

21 xL
€=mmmmmns >
N
i
Cij(A;B) = f,j(A;B) - f,’(A) fj(B) = O E 21xL
v
What can we do with this matrix?
2. Look for interactions reproducing correlations:
Correlations are mediated by paths of direct interactions
[Lapedes et al, unpublished 2001; Weigt et al, PNAS 2009]
'Iij(Ai/Aj)

Probabilistic score of sequence:

log P(A)= ¥ g,(A)+ Y J,(A.A) gi(A)

i<jr

indicative of structure




Hereafter, a unifying method to learn motifs controlling structural,
functional, evolutionary properties of proteins from sequence data

 How it works: Build representations of sequences
(idea coming from unsupervised learning)

 What it gives: Application to protein domains

 Why it works: Control of the operation point of the machine-
learning method



Restricted Boltzmann Machines

* Graphical model constituted by two sets of Hidden laver
random variables that are coupled together. y
log P(A,h) = Egi(Ai)+ Ew,.”(A,.) h, - EU”(hﬂ)
l Lu H wiﬂ (Al)
gives P(A) after integration over h'’s...
Visible layer

Ackley, Hinton, Sejnowsky 1985
Smolensky 1986



Restricted Boltzmann Machines

* Graphical model constituted by two sets of Hidden laver
random variables that are coupled together. y
log P(A,h) =Y g,(A)+ Y w,(A) h, = YU, (h,)
l Lu H wiﬂ (Al)
gives P(A) after integration over h'’s...
Quadratic U(h): identical to Potts model!!
Visible layer

(AL A) = Y W, (A) w,,(A)
u Ackley, Hinton, Sejnowsky 1985
Smolensky 1986




Restricted Boltzmann Machines

* Graphical model constituted by two sets of Hidden laver
random variables that are coupled together. y
log P(A,h) =Y g,(A)+ Y w,(A) h, = YU, (h,)
l Lu H Wi” (Al)
* Joint distribution of A, h define Visible layer

log P(A), logP(h|A), logP(Alh)

b \ AN

maximized over Extract latent factors Design sequence from
sequence data set (representation) from sequence representation



High-dimensional representations of protein sequences

Sequence space Representation space
AL A P(h|A) h, (activity)
®
o
o

> h 1
(type 1) (specificity)

RBM extract high-D representations of (common inputs to) sequences
* Representations are useful (to design « good » sequences) ...
... and, hopefully, biologically meaningful (structure, function, history)

=» Practical implementation of genotype-to-phenotype relation



Applications of RBM to protein sequence data

Hidden layer (100 dRelLU)

WW domain ‘
(PFAM PF00397)

Visible layer (21-state units)

Small domain with ~30 a.a.

Can be done for much longer proteins, e.g.
Trypsin (protease) with ~220 a.a.
HSP70 (chaperone) with ~600 a.a.




WW domain

= short binding domain involved in eukaryotic signalling proteins

S

Conservation (bits)
C? N

folds into 3-stranded antiparallel beta sheet

Binds to four different types of Proline (P) rich ligands:

Type l:  PPXY, Y =Tyrosine (aromatic) , X = any residue
Type ll:  PPLP, L = Leucine

Type lll: PR rich peptide, R = arginine

Type IV:  p(S/T)P, phosphorylated serine/threonine



Weights #1

Weights may correspond to contacts
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Weights #2

Weights may correspond to structural modes
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Weights #4

Weights #5
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Weights may describe functional specificity

[IW]]2=1.69
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Weights may describe functional specificity

Type I:

Type Il:
Type llI:
Type IV:

PPXY, Y = Tyrosine (aromatic) , X = any residue

PPLP, L = Leucine

PR rich peptide, R = arginine

p(S/T)P, phosphorylated serine/threonine

m Type | R
w Type llI oo R
W Type IV LR 3‘
B Unknown ~

-2 0

Ingham et al. Molecular and
Cell Biology 2005
Jager et al, PNAS 2006



Conditional design of
sequences

Once we understand what hidden
units code for, we may bias sampling ...

. MSA SR O
- RBM (h; ,hs') « RBM (h,hs) ™
. RBM (h;t,hst) + RBM (3h; ,hs)
4 2 0
Input /4

7

RBM are able to generate
sequences in a restricted
portion of the sequence space,
even unexplored by « natural »
sequences |



IoglP(A)

Conditional design of
sequences
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0 5 10 15
Mutations to closest natural sequence

Generated sequences have high
probabilities, and are far away
from natural sequences !

Approach benchmarked on
synthetic protein models

Ongoing experiments ...



Why are RBM extracting useful/interpretable

representations?

The problem: ® ® ® O
Find probability ®
distribution
from very few P O
samples

®

®

K ® @9 /
Sequence

space




Why are RBM extracting useful/interpretable
representations?

Mixture of @ O

local models :

Each hidden

unit sees and

codes for a

patch in

sequence space

K @ / Sequence

space




Why are RBM extracting useful/interpretable
representations?

Entangled model:

All or almost all
hidden

units active at any
position in
sequence space

Non interpretable
representations ...

Sequence
space




Why are RBM extracting useful/interpretable
representations?

Decomposition
into constitutive
@

features: >

Each hidden unit
codes for an O
invariant
feature;

sequences are ®“
obtained by
combinatorial PS

compositionof |\ T ]
features K ® > o< /

Sequence space

-
.
[
.
-
.
[
.
.
[
.
.
-
.
.
.
.
.
[
.
.
.
[
s &
.




The three representational regimes of RBM

“Mixture of local models” o _
) “Globally Distributed” regime

regime

I

More hidden units

per visible unit

* One hidden unit very active e All hidden units active

* Corresponding weights * Visible configurations
define local prototype are complex mixtures
* Unable to extract invariances * Not Interpretable
Non quadratic
Increasing sparsity hidden-unit
potentials

* Multiple hidden units very active
e Corresponding weights define
Tubiana, features composing visible
Monasson, configurations
PRL 2017 “Compositional” regime * Possibly interpretable




Driving RBM to the compositional phase
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