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Co-transcriptional folding: part I
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Computational results
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Co-transcriptional folding

Motivation:
RNA genes are transcribed, whereas true intergenic sections are
not.

Main idea:
RNA genes emerge in a directed process first 5’ then 3’: do RNA
genes fold co-transcriptionally i.e. while they are being
transcribed ? If yes, what are the effects ?

5’

3’emerges first

emerges last
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Experimental evidence for co-transcriptional folding

• RNA molecules fold as they are transcribed
[Boyle et al., J. of Mol. Biol. 1980, Kramer and Mills, Nucl. Acid

Res. 1981]

• transient structures exist and can have a distinct biological
function
[Kramer and Mills, Nucl. Acid Res. 1981, Repsilber et al., RNA

1999, Ro-Choi and Choi, Mol. and Cells 2003]

• wrong speed of transcription can lead to inactive transcripts
[Lewicki et al., J. of Mol. Biol. 1993, Chao et al., Nucl. Acid Res.

1995]

Key questions:

Do RNA genes encode information on their own correct
co-transcriptional folding ? If yes, how is this achieved ?
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Algorithm for detecting co-transcriptional folding

Idea:
for each helix of the known structure, measure asymmetry between
competing helices 5’ and 3’ of that helix
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• i-j is a base-pair of the known structure, i-c is a base-pair of a
competing helix

• a competing helix has to have a minimum length of 9 consecutive
base-pairs
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Statistics for detecting co-transcriptional folding
For each RNA sequence, calculate two scalar values:

Trans :=
∑

3’-trans−
∑

5’-trans
Cis :=

∑
5’-cis−

∑
3’-cis

where 3’-trans, 5’-trans, 5’-cis and 3’-cis are weights which are
proportional to 1/(distance: real – competing helix).

Interpretation:

Trans > 0 if competing helices are suppressed

Cis > 0 if transient helices are encouraged
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Results:

• data set A: 361 original transcripts (16S rRNAs, 23S rRNAs)

◦ data set B: 48 sub-sequences of original transcripts (group I and II

introns, several 23S rRNAs)

Trans Cis
A average (p-val.) 0.079± 0.026 (0.0012) 0.070± 0.004 (0.0001)
B average (p-val.) 0.041± 0.082 (0.3093) −0.003± 0.015 (0.5733)

⇒ co-transcriptional folding is encoded in structured transcripts
[Meyer and Miklós, BMC Bioinformatics (2004) 5:10]
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Summary:

Due to co-transcriptional folding, structured RNA genes

(1) suppress competing transient helices that could jeopardize the
formation of the final RNA structure

(2) encourage transient structures that would facilitate the
formation of the final RNA structure

Key insights:

⇒ RNA genes encode information on their own co-transcriptional
folding pathway
⇒ an RNA molecule in vivo explores only a reduced folding-space

Goals:
use these insights in order to

• improve RNA structure prediction

• improve RNA gene prediction
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Co-transcriptional folding: part II

Can we incorporate co-transcriptional folding into thermodynamic
RNA structure prediction?
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Key motivation:

1 Can we conceptually improve state-of-the-art thermodynamic
RNA structure prediction methods such as Mfold and
RNA-Fold ?

[Zuker (2003) NAR 31:13, Zuker and Stiegler (1981) NAR 9:133-148]

2 The performance accuracy of thermodynamic methods drops with
increased sequence length. Is there a conceptual way to fix this?

Discrepancies between the conserved RNA secondary structures and
predicted MFE structures “cannot simply be put down to errors in
the free energy parameters used in the model”.

[Morgan and Higgs (1996) J of Chem Physics 105(16):7152-7157]

3 RNA sequences in vivo fold co-transcriptionally. Can
we somehow capture this in a thermodynamic method?

[Boyle1980, Kramer1981, Brehm1983, Lewicki1993, Chao1995, Pan1999,

HeilmanMiller2003, HeilmanMiller2003b, Mahen2005, Adilakshmi2009,

Mahen2010, Woodson2010]
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Existing methods for predicting kinetic folding pathways:

• take a single RNA sequence as input

• make a range of simplifying assumptions

• transcription speed is constant
• no interactions with other molecules (ligands, proteins, other

transcripts)
• no modeling of detailed cellular environment (concentrations of

different ions, temperature etc)

• further limitations

• can typically only handle short sequences (typically ≤ 1000 bp)

Examples:

• RNAkinetics by Mironov et al.

• Kinfold by Flamm et al.

• Kinefold by Isambert et al.

• Kinwalker by Geis et al.
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Key challenges:

• Most RNA structure prediction algorithms have no concept of a
folding pathway and simply ignore the process of structure
formation. They assume a fully synthesized transcript.

• In vivo, however, a transcript emerging and folding
co-transcriptionally needs to find a way of actually reaching the
functional RNA structure, i.e. the structure formation process is
key.
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Key challenges:

• co-transcriptional folding reweights the space of all potential RNA
structures and makes some potential structures inaccessible and
others easier to form
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Key features of RNA structure prediction method
CoFold:

Design criteria:

• modify RNA-Fold in order to capture some overall effects of
co-transcriptional folding

• introduce only modifications with a clear biological interpretation
that . . .

• depend on as few free parameters as possible.

Key features:

• introduce a scaling-function that judges the reachability of
potential base-pairing partners during kinetic folding

• introduce scaling-function

γ(d) := α · (e− d
τ − 1) + 1

which depends on 2 free parameters α and τ and where d is the
distance between the two potential pairing partners along the
sequence (in nt)
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CoFold: data sets

test set training set
long data set combined data set

clade > 1000 nt all ≤ 1000 nt
Bacteria 15 69 (54)
Eukaryotes 15 112 (97)
Virus 0 20 (20)
Archea 17 33 (16)
Chloroplast 14 14 (0)
sum 61 248 (187)
av. seq. length 2397 776 (247)
max. seq. length 3578 3578 (628)

Selection criteria:

• only biological sequences

• ref. structures supported by strong evol. evidence

• long data set: length > 1000 nt and pairw. % seq. id ≤ 85%

• long data set ⇒ non-redundant 16S and 23S rRNAs

CRW data b. [Canone (2002) BMC Bioinf 3:2], Rfam data b. [Gardner (2011) NAR]
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CoFold: parameter training
Strategy:

• task: two parameters to train

• objective: optimize average MCC prediction accuracy

• method: twenty trials of five-fold cross-validation

• use combined data set: non-redundant and diverse data set of
248 sequences (av. length 776 nt, min 110 nt, max 3578 nt)
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CoFold: parameter training
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Outcome:

• two parameters strongly correlated: α = a · τ + b

where a = 6.1 · 10−4 ± 2 · 10−5 (slope) and b = 0.105± 0.016
(intercept) (R2 = 98.4%)

• ⇒ CoFold effectively depends only on one parameter

• optimal parameter combinations all fall within or near the 95%
confidence interval around the linear fit

• ⇒ parameter training robust

• ⇒ use α = 0.50 and τ = 640 in the following
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Introducing CoFold-A and RNAfold-A

Benchmark performance using the following four methods:

• CoFold and RNAfold: use default energy model
(Turner 1999)
[Mathews et al. (1999) J Mol Biol 288: 5]

• CoFold-A and RNAfold-A: use Andronescu energy
model (2007) comprising 363 free parameters that were
trained using sophisticated machine learning techniques.
[Andronescu et al. (2007) Bioinf 23:13]

• evaluate performance accuracy on long data set:
non-redundant, evol. diverse data set of 61 sequences (av.
length 2397 nt, min 1245 nt, max 3578 nt)
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CoFold: performance accuracy

Absolute (!) changes in prediction accuracy for base-pairs for structures

predicted by CoFold for individual sequences w.r.t. RNAfold.
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• true positive rate: TPR = 100 · TP/(TP + FN)

• positive predictive value: PPV = 100 · TP/(TP + FP)

• false positive rate: FPR = 100 · FP/(FP + TN)
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CoFold: performance accuracy in numbers

Prediction accuracy for base pairs

TPR (%) FPR (%) PPV (%) MCC (%)
RNAfold 46.30 0.0176 39.74 42.81
RNAfold-A 52.02 0.0160 44.76 48.17
CoFold 52.83 0.0159 45.79 49.10
CoFold-A 57.80 0.0145 50.06 53.70

Bottom line:

• MCC: RNAfold → CoFold +6% (TPR +7%, PPV +6%)

• MCC: CoFold → CoFold-A +4%

• FPR low for all four methods
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CoFold: influence on structures’ free energies

Relative free energy differences of the predicted structures w.r.t. the
MFE structures predicted by RNAfold.
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Conclusions:

• Andronescu 2007 parameters result in noticable free energy changes

• scaling-function of CoFold does not significantly (2%) change free
energies

⇒ our results support original hypothesis by Morgan & Higgs (1996) that
differences between conserved and predicted MFE structures are not

primarily due to errors in energy models
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Example: RNAfold versus CoFold-A predictions for the 23S rRNA of the

gamma-proteobacteria Pseudomonas aeruginosa (MCC +15%)

0 500 1000 1500 2000 2500

[Arc-plot made with R-chie, see www.e-rna.org]
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CoFold: summary

• captures one overall effect of co-transcriptional folding

• depends on only 1 new free parameter (rather than 363)

• parameter training is robust

• improves the prediction accuracy, esp. for long sequences

• free energies of predicted MFE RNA structures hardly changed

• same memory and time complexity as RNAfold

• can confirm hypothesis of Morgan & Higgs (1996)

• to use CoFold, visit

www.e-rna.org

[J.R. Proctor, I.M. Meyer, Nucleic Acids Research (2013) 41(9):e102]
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Co-transcriptional folding: part III

Are select, transient RNA structure features of co-folding pathways
conserved ?
And, if yes, can we identify them computationally?
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Data:

• non-redundant data set of 32 sequences extracted from
6 multiple-sequence alignments:

• bacterial ribonuclease P Type A
• bacterial signal recognition particle 4.5S RNA (SRP)
• tryptophan operon leader (trp)
• Hepatitis delta virus ribozyme (HDV)
• Levivirus maturation gene
• S-adenosylmethionine riboswitch (SAM)

• key features of known RNA structure features in alignments:

average values Canonical bps Covariation Conservation Gaps
known transient 0.91 0.10 0.77 0.02
known final 0.96 0.31 0.76 0.02
⇒ transient & final features conserved on approximately same level
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Overall strategy:
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Performance evaluation for known features

Matthews correlation coefficient (MCC) for known transient and final structural

features as function of the cutoff value for Kinefold (blue), RNAkinetics (green)

and Kinwalker (red).
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Performance evaluation for known features (cont’d)

Prediction accuracy for known transient and final structural features as function of the

cutoff value for Kinefold (blue), RNAkinetics (green) and Kinwalker (red).

TPR known transient known final
Kinwalker 0.428 0.762
Kinefold 0.183 0.586
RNAkinetics 0.722 0.652

TPR for MCC-optimized cut-off values.
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Detecting novel transient features:
Strategy:

• use Transat to predict new transient RNA structure features

[Wiebe and Meyer, PLoS CompBio, 2010]

average values Canonical bps Covariation Conservation Gaps
new transient 0.95 0.04 0.92 0.01
known transient 0.91 0.10 0.77 0.02
known final 0.96 0.31 0.76 0.02

⇒ potential new transient helices are highly conserved

TPR new transient known transient known final

Kinwalker 0.087 0.428 0.762
Kinefold 0 0.183 0.586
RNAkinetics 0.322 0.722 0.652

TPR for MCC-optimized cut-off values.
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Grand summary:

• structured RNA genes not only encode the final RNA structure, but
also information on how to get there co-transcriptionally, i.e. their
own folding pathway in vivo

• co-transcriptional folding in vivo reduces the effective structural
search space

• select transient RNA structures are highly conserved and seem to
serve as guiding lamp-posts

• the level of conservation of transient RNA structures can be similar
to that of final RNA structures

• conserved transient RNA structures can be predicted
computationally

• future: need more experimentally confirmed transient RNA
structures and folding pathways in vivo
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