Discovery of Archaeal Group I Introns using Infernal

Eric Nawrocki

National Center for Biotechnology Information National Institutes of Health

Sequence conservation provides information for homology searches

expect a match by chance: 1 in 2^{14} nt =~ 16 Kb

Structure contributes additional information from covariation

sequence + structure profile: 17 bits

Base-paired columns are not independent

Maximum *extra* info: 2 bits per base pair

 $\log_2(16/4) = 2$ bits

expect a match by chance: 1 in 2^{17} nt =~ 130 Kb reducing expected false positives by $2^3 = 8$ -fold

Levels of sequence and structure conservation in RNA families

Eddy lab software for profile probabilistic models (since 1994)

	sequence profiles	sequence and structure profiles
models	profile HMMs	covariance models (CMs)
software	HMMER	Infernal
main use	proteins, repetitive DNA elements	structural RNAs
databases	Pfam and Dfam (16712 and 4150 entries)	Rfam (2791 families)
performance for RNAs	faster but less accurate	slower but more accurate

http://hmmer.janelia.org Eddy, SR. PLoS Comp. Biol., 7:e1002195, 2011. Eddy, SR. PLoS Comp. Biol., 4:e1000069, 2008. Eddy. SR. Bioinformatics, 14:755-763, 1998.

http://infernal.janelia.org Nawrocki EP, Eddy SR Bioinformatics, 29:2933-2935, 2013. Eddy SR, Durbin R. Nucleic Acids Research, 22:2079-2088, 1994.

Infernal outperforms primary-sequence based methods on our benchmark (and others*, not shown)

*Freyhult EK, Bollback JP, Gardner PP. Genome Res. 2007 17: 117-125.

Filter target database using profile HMMs*

*Weinberg, Ruzzo, RECOMB, 243-251, 2004; Weinberg, Ruzzo, Bioinformatics, 22(1) 35-39 2006.

Filter target database using profile HMMs*

- Even if we filter out 99% of the database (for up to 100X acceleration), searches will still be too slow.
- CM step needs to be accelerated.

*Weinberg, Ruzzo, RECOMB, 243-251, 2004; Weinberg, Ruzzo, Bioinformatics, 22(1) 35-39 2006.

Accelerating CM alignment step 1: HMM posterior decoding to get confidence estimates

Accelerating CM alignment step 2: use HMM alignment confidence to constrain CM alignment*

*M. P. Brown. Proc. Int. Conf. ISMB, 8:5766, 2000.

Accelerating CM alignment step 2: use HMM alignment confidence to constrain CM alignment*

*M. P. Brown. Proc. Int. Conf. ISMB, 8:5766, 2000.

Accelerating CM alignment step 3: use HMM alignment confidence to constrain CM alignment*

*M. P. Brown. Proc. Int. Conf. ISMB, 8:5766, 2000.

Use HMMs as filters and to constrain CM alignment

HMM filter first pass

HMM-based acceleration makes Infernal 10,000 times faster

Nawrocki EP, Eddy SR. Bioinformatics, 29:2487-2489, 2013.

Infernal 1.1 finds 11,000 new group I intron candidates

Table 1. Comparison of the old Rfam 11.0 BLAST and Infernal 1.0 search strategy versus the new Rfam 12.0 Infernal 1.1 search strategy for 15 of 200randomly chosen families

Accession	Family ID	Length (nt)	#of seed seqs	Time new (h)	Time old (h)	Time (old/new)	New total hits	Old total hits	New unique hits	Old unique hits
Top five families										
RF00028	Intron_gpI	251	12	125.0	357.2	2.8	71 433	60 264	11 175	1
RF00026	U6	104	188	31.2	181.1	5.8	66 517	62 174	4367	14
RF00003	U1	166	100	11.6	64.0	5.5	15 770	14 867	904	1
RF00162	SAM	108	433	8.3	590.0	70.8	4905	4797	108	0
RF00050	FMN	140	144	17.1	169.9	23.9	4381	4306	76	1

Group I catalytic introns

- self splicing ribozymes found in lower eukaryotes, higher plants, bacteria and bacteriophages
- often have ORFs (homing endonucleases) inserted in loop regions
- genes they are found in:
 - bacteria and mitochondria and chloroplast of lower euks: rRNA, mRNA, and tRNAs
 - higher plants mitochondria and chloroplast: a few tRNA and mRNA genes
 - nuclear lower eukaryotic genomes: only rRNA

*A. Hedberg and S. D. Johansen, Mobile DNA, 2013 4:17

#seqs

that do not have a gap at the position.

model

GISSD*: Group I Intron Sequence and Structure Database

#					ļ	R–	ļ b:	its
# # idx #	name	nseq	avlen	%id	 nbp 	scape nsig	 HMM	CM-HMM
# 1	RF00028	12	364.8	34	61	8	62.6	41.7
2	IA1	76	583.6	45	82	51	166.5	38.0
3	IA2	15	276.8	38	67	24	58.0	47.5
4	IA3	56	282.3	46	81	50	122.4	39.1
5	IB1	42	298.0	72	87	9	320.4	51.8
6	IB2	18	242.2	39	65	27	57.1	39.3
7	IB3	7	277.7	52	72	10	98.5	60.3
8	IB4	89	282.3	44	72	43	108.3	33.2
9	IC1	837	436.0	39	103	84	130.3	40.3
10	IC2	32	320.2	66	86	27	298.1	51.7
11	IC3	328	255.8	67	58	16	244.1	13.2
12	ID	17	242.5	53	66	16	122.8	45.5
13	IE1	38	362.2	60	95	19	268.0	44.8
14	IE2	56	399.9	55	112	38	250.9	47.4
15	IE3	110	405.9	57	119	51	293.4	45.7

*Y. Zhou et. al, NAR, 2008. 36(suppl 1), D31-D37.

Searching Rfamseq with GISSD models

	# RF00028	# hits	# hits	# hits
type	seed seqs	total	common	unique
IA1	3	814	385	425
IA2	1	1722	823	899
IA3		958	401	557
IB1		3949	1033	2916
IB2		1861	467	1394
IB3		479	136	343
IB4	1	5717	2400	3317
IC1	3	8475	5385	3090
IC2		4870	3858	1012
IC3	4	72692	66033	6659
ID		572	0	572
IE1		1305	10	1295
IE2		1377	8	1369
IE3		1379	1	1378
total	12	106170*	80940*	16842
RF00028	_	71421	71421	-

* contains overlaps

		Group I Introns?		
		previously known	Infernal v1.1 predictions	
EUKARYOTA	- insects	-	+	
	 flatworms 	-	+	
	 vertebrates 	-	+	
	 jellyfish 	+	+	
	 Choanoflagellata 	-	+	
	• fungi	+	+	
	- plants	+	+	
	- ciliates	+	+	
ARCHAEA				
	- Euryarchaeota	-	-	
	 Crenarchaeota 	-	+	
	 Thaumarcheaota 	-	+	
BACTERIA	 Proteobacteria 	+	+	
	- Cyanobacteria	+	+	
	- Aquifex	-	+	
	 Bacteriodetes 	-	+	
	 Firmicutes 	+	+	
	- Actinobacteria	-	+	

Homology searches for group I introns in Archaea

- downloaded all archaeal sequences in GenBank (6.7Gb as of Sept 2017)
- searched archaeal sequences with all GISSD models + RF00028 with default cmsearch parameters and with --anytrunc
- 95 non-overlapping hits with E < 0.01 corresponding* to 39 group I intron candidates (12 IA3 and 27 IB4)
- 30/39 introns have at least one hit with $E < 10^{-10}$
- 36 within LSU rRNA, 3 within SSU rRNA
- All IA3s are in one of two LSU insertion positions:
 - LSU/2593 (N=10)
 - LSU/2500 (N=2)
- All IB4s are in one of two LSU insertion positions and one SSU position:
 - LSU/1931 (N=15)
 - LSU/1923 (N=9)
 - SSU/1498 (N=3)

*as determined via manual sequence analysis by Tom Jones

*E. P. Nawrocki, T. A. Jones, and S. R. Eddy, NAR, 2018, gky414

Could archaeal group I introns have evolved into BHB introns?

Archaeal group I introns can occur in same host gene as BHB introns

Woesarchaeota	LSU rRNA (complete)	IB4.5		
KP308748.1				
	19474	21438 311nt 21748	22684	
			142.1	
Woesarchaeota	LSO FRINA (complete)		IA3.1	
CP010426.1	667446		664815 705nt 664111 663820	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Furvarchaeota	LSU rRNA (complete)	BHB BHB	IA3.3	
LQMP01000030.1				
	68771	66999 66957 66653 43nt 66683	66091 819nt 65273 64	825
		30nt		
Ainersheeste	LSU rRNA (complete)	ВНВ	IB4.9	ВНВ
Aigarchaeota	LSU rRNA (complete)	ВНВ	IB4.9	ВНВ
Aigarchaeota BA000048.1	LSU rRNA (complete)	692nt 1315251	IB4.9 1314432 1133nt 131	BHB 3300 1312773 601nt 1312173 1311688
Aigarchaeota BA000048.1	LSU rRNA (complete)	692nt 1315251	IB4.9	BHB 3300 1312773 601nt 1312173 1311688
Aigarchaeota BA000048.1	LSU rRNA (complete) 1317180 1315942 SSU rRNA (5' truncated) UR4 19	692nt 1315251	IB4.9 1314432 1133nt 131	BHB 3300 1312773 601nt 1312173 1311688
Aigarchaeota BA000048.1	LSU rRNA (complete) 1317180 1315942 SSU rRNA (5' truncated) IB4.19	BHB 692nt 1315251	IB4.9 1314432 1133nt 131	BHB 3300 1312773 601nt 1312173 1311688
Aigarchaeota BA000048.1	LSU rRNA (complete) 1317180 1315942 SSU rRNA (5' truncated) IB4.19 13829 13564 735nt 12830 12788	692nt 1315251	IB4.9 1314432 1133nt 131	BHB 3300 1312773 601nt 1312173 1311688
Aigarchaeota BA000048.1 Micrarchaeota	LSU rRNA (complete) 1317180 1315942 SSU rRNA (5' truncated) IB4.19 13829 13564 735nt 12830 12788 LSU rRNA (complete)	BHB 692nt 1315251	IB4.9 1314432 1133nt 131	BHB 3300 1312773 601nt 1312173 1311688
Aigarchaeota BA000048.1 Micrarchaeota MNVH01000001.1	LSU rRNA (complete) 1317180 1315942 SSU rRNA (5' truncated) 184.19 13829 13564 735nt 12830 12788 LSU rRNA (complete)	BHB 692nt 1315251 IB4.18	IB4.9 1314432 1133nt 131 IA3.11 BH	BHB 3300 1312773 601nt 1312173 1311688 B
Aigarchaeota BA000048.1 Micrarchaeota MNVH01000001.1	LSU rRNA (complete) 1317180 1315942 SSU rRNA (5' truncated) IB4.19 13829 13564 735nt 12830 12788 LSU rRNA (complete) 12393	BHB 692nt 1315251 IB4.18	IB4.9 1314432 1133nt 131 IA3.11 BH 750 9089 8693 8621	BHB 3300 1312773 601nt 1312173 1311688 B 8424 8193

*PNAS March 22, 2011. 108 (12) 4782-4787;

Group I introns are widespread in Archaea

Acknowledgements

Harvard/Janeli Sean Eddy Tom Jones Diana Kolbe Travis Wheeler Elena Rivas Michael Farrar	a NCBI Alejandro Schäffer David Landsman Jim Ostell David Lipman
GISSD Yu Zhou Chen Lu Qi-Jia Wu Yu Wang Zhi-Tao Sun Jia-Cong Deng Yi Zhang	David Haussler's group Yasu Sakakibara (CM-like models in 1994)

Thank you Elena and Eric!