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Topics of my presentation

• Why analyze nuclear genomes/transcriptomes of the chosen unicellular 
flagellates

• How to select eukaryotic contigs within a sea of bacterial contaminants?

• Improved nuclear genome assembly

• Improved gene/intron modeling procedures

• Results :
– Genome size, number of genes and functional classes, introns
– Do primitive eukaryotes have common structured RNAs
- … including regular spliceosomal RNAs of the two types?
– More than one type of major and minor spliceosome?



Species selection:

Jakobids:
Andalucia godoyi
Jakoba bahamiensis
Jakoba libera
Reclinomonas americana
Seculamonas

Malawimonads:
Malawimonas californiana
Malawimonas jakobiformis
Malawimonas sp.

Close to malawimonads:
Planomonas micra

All require live bacteria as food source – contamination issues



Why analyze genomes (plus transcriptomes) of the 
chosen unicellular flagellates?

Jakobids have most ‘primitive’, gene-rich mitochondrial genomes



Why analyze nuclear genomes plus transcriptomes 
of the chosen unicellular flagellates?

Malawimonads have very short branch length in phylogenies, branch deeply in 
eukaryotic tree ancestral to animal/fungi/amoebozoans;  and far away from 

jakobids.
Recent phylogenomics suggests that Planomonas maps deeply in the tree, not far 

from the malawimonad divergence.



Selected questions
Do jakobids and malawimonads have

- the basic set of nuclear protein coding genes and
- structured RNAs (RNase P, MRP, SRP etc)
- spliceosomal introns (major and U12-type)

- recognizable U RNAs and associated proteins
- typical splice junctions

… etc …



Challenges in genome analysis:
incorrect genome assemblies and gene models

(1) Main issue: hybrid sequence reads (from library ligation 
reaction) cause incorrect joining : mixed eukaryote –

bacterial contigs

Solutions: identify and remove hybrid reads, and selectively
assemble eukaryotic reads only (new iterative assembly 

procedure)



- mapping of deep RNAseq data (poly-A mRNAs) 
- gene models indicate spliceosomal introns (if present)
- AT content
- read coverage
- similarity of eukaryotic versus bacteria-specific genes 
(issue   with organelles …)

- comparative genomics – sequence several  protist species 
from the same clade

Solution: we assembled a pipeline that decides, based on 
combined evidence. Yet, a human expert is still needed for the 
final check.

(2) How to filter out nuclear eukaryotic 
contigs?
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(3) Improving gene/intron modeling procedure



Current, comparative view of nuclear genomes

Species  Size 
(Mbp)

Contigs Genes  
(protein)

Introns
GT-AG

Introns
AT-AC

GT-AG
U-RNAs

AT-AC
U RNAs

Ancyromonas 29,6 7 181 13 433 7 540 - + -
Malawi_calif 50,1 953 13 559 46 428 + + +
Malawi_jakobi 70,8 8 106 25 693 143 089 + + +
Malawi_sp 40,9 2 678 18 991 54 155 - + -
Andalucia 20,1 66 8 642 1 280 - + -
Jakoba_baha 28,6 6 085 11 870 69 350 74 + +
Jakoba_libera 80,7 33 265 27 121 59 089 + + +
Reclinomonas 51,3 15 554 21 039 111 752 + + +
Seculamonas 47,9 3 739 10 256 97 199 + + +

Gene numbers in M. jakobiformis, J. libera and Reclinomonas are 
inflated due either to genome duplication or ploidy.  In Reclinomonas , the 

distribution of variants is consistent with a diploid genome,
J. libera seems like a more complex mixed situation. 



Current, comparative view
Mito proteome (in nuclear genes) mostly standard
• a few functions more bacteria-like (analyses by Mike Gray)
• Phage-like mitochondrial RNA polymerase in Ancyromonas

and malawimonads, jakobids have bacterial subunits 
encoded in mtDNA

• most of mitochondrial import machinery (TIM complex)

Other major functions also fairly conventional 
Including: proteasome, peroxisome, golgi, nuclear pore, some 
meiosis and sex-related genes, dyneins, other cytoskeleton 
structures, RNase P and signal recognition complex …

Presence of RNase P, MRP, SRP RNAs, yet several are 
only found after improving/updating RFAM CM models

Andalucia has streamlined gene sets; seems secondarily 
derived.



Presence of spliceosomal U RNAs
U1,2,4,5.6: major spliceosome, GT – AG boundaries

U4atac, U5, U6atac,U11,12: minor spliceosome, AT – AC and GT - AG

Species  U1 U2 U4 U5 U6 U4atac U6atac U11 U12

Planomonas + + + - - - - - -
Malawi_calif + + + + + - + + +
Malawi_jakobif + + + + + - + + +
Malawi_sp + + + + + - - - -
Andalucia + + + + + - - - -
Jakoba_baha + + + - + - + + -
Jakoba_libera + + + - + - + + +
Reclinomonas + + + - + - + + +
Seculamonas + + + + + - + + +

Occurrence of U-RNAs correlates with observed 
presence of AT/AC introns, however lack of U4atac

and U5 ???



U4/U4atac and U5 have essential roles in spliceosome 
assembly and structure.

Are there other members of this RNA family?

From Turunen, 2013



Families of distinct U RNAs?

Function of these variants? More than two 
spliceosomes? Lack of U5 in some jakobids?

Needs modeling of potential U-RNA/intron splice site 
interactions



What about intron splice junctions ?

From Turunen, 2013

Human

Jakoba bahamiensis – extended motifs
U12-type:  ATATCCTC …                      …  GTGTGCAC

GTATC …                       …           YUCAG
U2-type      GTGCGT … …          YUCAG

group II     GTGCGA …



Conclusions
 More precise genome assembly and annotation procedures for highly 

contaminated total DNAs

 Jakobids and malawimonads have a basic set of about 9,000 - 13,000 
nuclear protein coding genes, as well as common eukaryotic genes for 
structured RNAs. No surprising lack of general-function genes.

 Intron numbers vary wildly among jakobids, and splice-site motifs are 
unusually long

 Jakobid and malawimonad U RNAs are fairly typical, and frequently 
occur in more than one variant. U4atac remains unidentified, as well as 
U5 in three out of five jakobids.

 Modeling of U RNA – intron sequence interactions is required to better  
understand changes of the spliceosomal machineries.
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U11 in human transcriptome (NCBI)


