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Part I 
 

…in which I recapitulate three 
properties of the Toric Code and 

then claim that they are 
superficially unrelated.



Part I - The Toric Code
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This wavefunction has 3 interesting properties  
(for the purpose of this talk).



Local parent Hamiltonian

H = �
X

p

Ap �
X

v

Bv

SR

Constant correction to the area law

S0(TrS | i h |) = |@R|� �

� = log 2

Four-fold degeneracy

h ij | kli = �ik�jl

H | iji = Emin | iji

| iji = (Z⌦Nh)i(Z⌦Nv )j | i
i, j 2 {0, 1}
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Is there a unifying 
picture that explains all 

of these properties?
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Part II

…in which I show that P1-
P3 arise from a single 

equation, if we write the 
Toric Code as a G-invariant 
PEPS, thereby motivating 

that G-invariant PEPS 
generically have interesting 

behaviour.



Part II - G-invariant PEPS
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=

even  
parity

odd  
parity

Most general PEPS tensor with D = 2:

�1 |1i h | + �2 |2i h |+
�3 |3i h | + �4 |4i h |+
�5 |5i h | + �6 |6i h |+
�7 |7i h | + �8 |8i h |

�9 |9i h | + �10 |10i h |+
�11 |11i h | + �12 |12i h |+
�13 |13i h | + �14 |14i h |+
�15 |15i h | + �16 |16i h |

+
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• Assume 〈i | j〉 = δij 

• If all λi ≠ 0, we call this tensor injective 

• If λi = 0 for i = 9,…,16, the tensor is Z2-invariant 

• If also λi ≠ 0 for i=1,…,8, the tensor is Z2-injective 

• If also λi = λj for i,j = 1,…, 8, the tensor is Z2-isometric

A

1

=

even parity odd parity

8X

i=1

�i |ii hvi| +
16X

i=9

�i |ii hvi|

|ψZ2-isometric〉= |ψToric Code〉

Part II - G-invariant PEPS
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Part II - G-invariant PEPS
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16X
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�i |ii hvi|

This graphical equation enables 
us to prove P1-3.

λi = 0 for i = 9,…,16
Z2-invariance
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Part II - G-invariant PEPS

P3

Constant correction to the area law

Local parent Hamiltonian

Four-fold degeneracy



Part II - G-invariant PEPS | Proof of P3 - Outline

• Let  
 
 
be the ground state of some local Hamiltonian.  

• Define  
 

• Then           is also a ground state.
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Strings wrapping around the cylinder have 
no location.

Part II - G-invariant PEPS | Proof of P3 - Step 1



Part II - G-invariant PEPS | Proof of P3 - Step 2
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Part II - G-invariant PEPS | Proof of P3 - Step 3

 
N. Schuch, J.I. Cirac, D. Perez-Garcia,  
Annals of Physics 325, 2153 (2010),  

[arXiv:1001.3807]

In particular, for any local Hamiltonian

and if          is a ground state, so is       .| 1i | 2i

h 1|H| 1i = h 2|H| 2i



There exists a local Hamiltonian H 
that has |ψ> as a ground state.

H = �
X

p

Ap �
X

v

Bv

SR

|ψ>  exhibits a constant correction 
to the area law of its entanglement 

entropy.

S0(TrS | i h |) = |@R|� �

� = log 2

H has a three extra ground 
states on the torus.

h ij | kli = �ik�jl

H | iji = Emin | iji

| iji = (Z⌦Nh)i(Z⌦Nv )j | i
i, j 2 {0, 1}

Part II - G-invariant PEPS

Is there a unifying picture that explains all of 
these properties?

Yes, G-invariant PEPS.



Part II - G-invariant PEPS | Perspective

Discrete 
Virtual 
Symmetry

Finite 
ground state 
degeneracy

Parent 
Hamiltonian

Entanglement 
Entropy

Quantum 
Double Models

[meat grinder courtesy of 
David T. Stephen]





Part II - G-invariant PEPS | Perspective

Ground 
states?

Entropy?

Unknown class  
of states?

Hamiltonian?

Continuous 
Virtual 
Symmetry

[meat grinder courtesy of 
David T. Stephen]



Part III

…where I define a class of G-
invariant PEPS with G=SU(2) 

and show four results that 
demonstrate that these new 

states behave quite differently 
from the case of G discrete.



Part III - SU(2)-invariant PEPS | The Wavefunction
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• Contracting this tensor network…  
 
 
 
 

• …and identify the physical basis vectors with pictures  
 

Part III - SU(2)-invariant PEPS | The Wavefunction
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B B B
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B B B

= 2 + +· · ·

1

• Contracting this tensor network…  
 
 
 
 

• …and identify the physical basis vectors with pictures  
 

• …then the wavefunction becomes a quantum loop 
model:

| i =
X

L

DnL |Li nL = number of 
closed loops in L

Part III - SU(2)-invariant PEPS | The Wavefunction

1

|0iA = �

����� 0

+�����

+
+

����� 1

+�����

+

(1)

1

|1i



• Plenty of Quantum Loop 
Model literature for  
D = - A2 - A-2 < 2. 

• In our case, D = 2 is given 
by the bond dimension.

• P. Fendley, 
arXiv:cond-mat.stat-mech/0711.0014 

• M. Troyer, S. Trebst, K. Shtengel and C. Nayak,  
Phys. Rev. Lett. 101, 230401 (2008)  

• P. Fendley, 
Annals of Physics 323 (2008) 3113 

• P. Fendley and J. L. Jacobsen, 
J.Phys. A41:215001 (2008) 

• P. Fendley, S. V. Isakov and M. Troyer,  
Phys. Rev. Lett. 110, 260408 (2013) 

Part III - SU(2)-invariant PEPS | Side remark

| i =
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L

DnL |Li nL = number of 
closed loops in L
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Part III - SU(2)-invariant PEPS | Result #1 - Entanglement Entropy



• SU(2)-symmetry imposes constraints. 

• Rank = height-restricted Dyck paths on |∂R|
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S0 (ρR) = |∂R| log 2 - 3/2 log |∂R|+ log f(α)

area law correction

aspect ratio

Part III - SU(2)-invariant PEPS | Result #1 - Entanglement Entropy



Part III - SU(2)-invariant PEPS | Side remark

• Examples of models 
with logarithmic 
correction terms

S0 (ρR) = |∂R| log 2 - 3/2 log |∂R|+ log f(α)

area law correction

aspect ratio

•E. Ardonne, P. Fendley, and E. Fradkin,  
Ann. Phys. 310,  493 (2004)  

•E. Fradkin and J. E. Moore, 
Phys.Rev.Lett.97:050404 (2006) 



• Define a loop state on a 2 x 2 plaquette  
 
 

• Hamiltonian:  
 

• Action of H:  

2 � � � �

1

Part III - SU(2)-invariant PEPS | Result #2 - Parent Hamiltonian
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We will refer to |Bi as bubbles, |E

i

i are endpoints and
|O

i

i are bubble-free states. Furthermore, define

|�i = 1

2
p
2

"
2 |Bi+

4X

i=1

|E
i

i
#

(35)

Then the local terms in the Hamiltonian can be written
as

h = 1� |�i h�|�
11X

i=1

|O
i

i hO
i

| (36)

In other words, the local terms annihilate all bubble-free
states while, on the orthogonal complement it enforces
the following relation between the weights of the loop
patterns:

2 � � � � (37)

i.e., two states that are related by such a move ought to
have a fixed relative weight in order for the overall state
to be a ground state (bubbles must have twice as much
weight as endpoints). We will call such a move between
loop configurations a surgery move and use the notation
L0 = �(L) to describe the fact that loop patterns L0 and
L are related by such a move. We will denote sequences
of surgery moves by capital letters, e.g. ⌃ = �

1

. . .�
M

.
Clearly, each surgery move leaves the connectivity pat-

tern invariant, i.e., hK|h|Li = 0 if K 2 C
p

6= C
q

3 L.
The Hamiltonian is therefore block diagonal in the loop
basis

H =
M

p

H
p (38)

where each of the H
p

is zero outside of V (C
p

).

B. Intersection Property

When the PEPS is either injective or G-injective, the
intersection property allows us to study the ground space.
It tells us that any state that locally looks like the PEPS
on each of two overlapping subregions globally has to be
identical to the PEPS [15]. Typically, the proof relies
i) on the existence of an inverse (such that any virtual
action on the symmetric subspace can be achieved when
acting on the PEPS on the physical level) and ii) on a
concatenation property of the inverse (such that its ele-
mentary tensor does not depend on the size of the patch
one wants to invert). A necessary condition for ii) is an
orthogonality condition of the representation of the form
Tr[U

g

U
h

] = �
gh

, i.e. each of the group elements can be
seen as a basis vector of some finite-dimensional Hilbert
space and they are mutually orthogonal. For groups with
infinitely many elements, this requirement can not be ful-
filled. Therefore, no such inverse can exists. Instead, we
are going to show directly, using the explicit representa-
tion of the Hamiltonian in terms of surgery moves, that

S
N

h

⇥N

v

:= span{| 
N

h

⇥N

v

(A,X)i |X 2 C(2N

h

+2N

v

)}
(39)

is the exact ground space of (32). This entails, that
the degeneracy of the parent Hamiltonian is given by
N (N

h

, N
v

).
Consider a particular choice of basis for (39), namely

{| 
N

h

⇥N

v

(A,m⇤(p))i}
p

(cf. (19)). Each of these states is
- by definition - a ground state of (32). Furthermore, by
virtue of (38), they live in di↵erent blocks of the Hamil-
tonian. Therefore, it remains to show that H has ex-
actly one ground state per block. To this end, consider a
general state in one of the blocks, | 

p

i =
P

L2C

p

c
L

|Li
for some fixed connectivity pattern p and assume that
H | 

p

i = 0. This implies h
i

| 
p

i = 0 8i. Choose any
loop pattern L

0

2 C
p

with c
L0 6= 0. Our claim is that

all other coe�cients are now uniquely determined. Con-
sider a loop pattern K 2 C

p

which is related to L
0

by a
surgery move, K = �(L

0

). It is then straightforward to
verify that

c
K

= 2nK

�n

L0 c
L0 (40)

As we show in the appendix, for every two loop patterns
L and L0 in the same connectivity class, there exists a
sequence of surgery moves ⌃ such that

L0 = ⌃(L) (41)

We could also say that the move (37) is ergodic in the
space of loop states with a fixed connectivity pattern.
This implies that (modulo normalisation)

| 
p

i =
X

L2C

p

2nL |Li (42)

i.e., there is a unique ground state per sector of the
Hamiltonian.

6

! 0

h = 1� |�i h�|�⇧
no bubbles

or tadpoles



Part III - SU(2)-invariant PEPS | Result #2 - Parent Hamiltonian

On open boundaries, the ground space of       is 
exactly spanned by the PEPS, i.e., for every state 
which fulfils 
 
 
 
there exists a boundary vector    , such that

H

X

=
B B B
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H | i = 0



Part III - SU(2)-invariant PEPS | Result #3 - String-inserted states

dim span

(on an N x N torus)
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VVVV

�������������������

[U, V ] = 0

9
>>>>>>>>>>>>>=
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1
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Number of such isolated states = 2(2N -1) on N x N torus.

and

1

1

| 1i = | 2i =

H | ii = 0

There is a second mechanism that contributes an 
exponential number of ground states to the degeneracy.

Part III - SU(2)-invariant PEPS | Result #4 - Isolated states
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SU(2) PEPS Quantum Dimer 
Model

Quantum 6-Vertex 
Model

•  D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988) • R. Moessner and K. S. Raman arXiv:cond-mat.str-el/0809.3051 

Part III - SU(2)-invariant PEPS | Result #4 - Isolated states



Virtual 
SU(2) 
Symmetry

Part III - Conclusion

Existence of a 
local parent 
Hamiltonian
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1

h =

Logarithmic 
correction to 
the area law

|@R|� log |@R|

Polynomial 
number of 

string-inserted 
ground states

A g A A A

A A A Ag

1

Exponential 
number of 

isolated ground 
states

1



• Proof without explicit representation? 

• Relationships with quantum loop, dimer and six-
vertex models & conformal critical points?

Part III - Outlook


