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q Representation of thermal states
q Recent insights into entanglement scaling in thermal states (1D)
q Exponential energy scales

} benefits of logarithmic ! grid
} compare to coarse graining renormalization group approaches

q Results
} benchmark: performance (numerical cost and accuracy)
} 1D Heisenberg chain

• entanglement scaling at large and small !
• specific heat and scaling exponents
• entanglement flow diagram vs. energy scales

} 2D square Heisenberg model: specific heat and entanglement
q Summary & outlook



Representation of thermal density matrix
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Entanglement scaling in thermal states in 1D

q Many-body finite size spectrum (critical systems, or !" ≫ gap	Δ)

finite size level-spacing !" ∼ 1/,
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entropy of thermal state

More rigorous arguments based on conformal field theory (CFT)
• J. Dubail [J. Phys. A: Math. Theor. 50 (2017) 234001]
• T. Barthel [arXiv:1708.09349 [quant-ph], 2017]

allows for efficient simulations
of thermal states (entanglement 
entropy comparable to pure
states with periodic BC)
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Thermal correlation length and symmetries

q ! " ≲ $
% log " independent of ) for ) → ∞	

} finite correlation length - ∼ " in thermal state

q Can use finite systems to simulate thermodynamic limit
} can use finite size MPS in |Ψ⟩
} can exploit all symmetries (abelian and non-abelian) in an optimal way

≡ 345 ⋅ 37 =

e.g. spin-half site: 9 ∈ {1, 3}	



Exponential energy scales

q Weak growth of block entropy of thermal state ! " ∼
$

%
log "

} good for numerical efficiency
} however: ill-suited for linear imaginary time evolution schemes

e.g. Trotter: " → " + + with + ≪ "

-./0 ≃ -./23240-./5660

small Trotter error enforces small constant + for any "

q rather need to make bold steps in " with increasing "
to see a significant change in physical properties within a critical regime
natural choice: " → Λ" (Λ > 1)    ⇒ ;! ∼ const.
simple choice: Λ = 2

CD +E → CD +E ∗ CD +E = CD 2+E → CD 2+E ∗ CD 2+E = CD 4+E → ⋯

"I = +E2
I

exponential tensor 
renormalization group 

(XTRG)



Benefits of logarithmic temperature grid

q Simple initialization of ! "# 	
} can start with exponentially small "# such that ! "# = 1 − "#(
} simply use the MPO of ( ⇒ up to minor tweak, same MPO for ! "#

q No requirement for bipartite setup etc. as required for Trotter
} simply applicable to longer range Hamiltonians
} including (quasi-) 2D systems
} no swap gates to deal with Trotter steps

q Maximal speed to reach large * with minimal number of truncation steps

q Fine grained temperature resolution!
} using +-shifted temperature grids *, = "#2,./

} equivalent to using "# → "#2/ with + ∈ [0,1[
} easy to parallelize: independent runs for logarithmically interleaved data sets



Brief comparison to coarse graining renormalization

q Xie et al. (PRB 2012)
Coarse-graining renormalization by higher-order singular value decomposition

2D Ising model (D=24)

q starting point: Trotter gates
q infinite tensor network

} no clean orthogonal vector spaces
} no symmetries used

q no interleaved temperatures
} „However, the number of temperature 

points that can be studied with this 
approach is quite limited […],
since the temperature is reduced
by a factor of 2 at each contraction
along the Trotter direction.”

} therefore largely favors linearized 
imaginary time evolution

Similarly for Czarnik et al. (PRB 2015)



Benchmark: performance

q XTRG is most accurate
q XTRG is clearly fastest

speed gain (for D*=100,200)

LTRG          SETTN           XTRG

Free energy ! = − $
% log	*

L=18 spin-1/2 Heisenberg chain (PBC)

XTRG = exponential tensor renormalization group + → + ∗ +
LTRG  = linearized tensor renormalization group + → + ∗ +(/0)
SETTN = series expansion thermal tensor network + → +(2) ∗ 34%5/7

×10 ×10

starting from the same + = +(/0), proceed



Block entanglement entropy 

L=200 spin-1/2 Heisenberg chain (OBC)
log. growth ! ∼ #

$ log(
with ) = 0.999

universal ! ∼ (. behavior for extremly large temperatures where ! ≪ 1
(irrespective of the physics or dimensionality of the model!)

This offers an alternative
to obtain central charge
via finite-T calculations!

In comparison to Calabrese
(2004) for obtaining ) from
ground states with periodic BC

• comparable block entropy scaling
• no system size dependence as 

long as 1 ≳ 3



Specific heat and critical exponents

L=300  spin-1/2 Heisenberg chain D*=250

Specific heat at low temperatures !" = $%
&' ( with ) =

$
* ⇒ ! = 0.996

at large temperatures:
universal 1/(* behavior

(irrespective of the
physics or dimensionality
of the model!)



Entanglement flow diagram

q spectra flow towards low-
energy regime

q can identify qualitative 
changes for finite-T phase
transitions

q here: transition to
(artificial) gapped phase
due to finite size

L=100 spin-1/2 Heisenberg chain (OBC)



2D lattice models: benchmark

16×5 spin-1/2 Heisenberg square lattice

free energy /site (% ∼ '
( log,) internal energy / site (- ∼ tr(12)) specific heat / site (45 ∼ 67

68) 

QWL = quantum Wang-Landau (Monte Carlo; ALPS 2011)
METTS = minimally entangled typical thermal states (S. R. White, 2009; data by B. Bruognolo)

lowest temperatures reachable 
by METTS and QWL at 
comparable numerical cost

excellent agreement after 
extrapolation 9∗ → ∞



Entanglement scaling in 2D system

! = 10 spin-1/2 Heisenberg square lattice (OBC)
q also log. corrections at low

temperatures (large %)
q due to spontaneously

broken symmetries, 
leading to the presence of
Goldstone modes *)

q effectively: a systematic
efficient generalization to
cluster expansion to 2D 
systems

*) also confirmed by Melitski et al. (arXiv:1112.5166 [cond-mat.str-el], 2011)
or Monte Carlo simulations: A. Kallin et. al. (Phys. Rev. B 84, 165134 (2011))



Summary

q XTRG is an extremely simple, yet efficient approach to thermal states in 
quasi-1D
} ! → ! ∗ ! resulting in $ → 2$
} easy to parallelize for fine temperature resolution
} no Trotter setup required whatsoever,

and therefore no Trotter error or error from swap gates
} clean exploitation of all symmetries in the Hamiltonian
} relates to energy scales [much like the Numerical Renormalization Group (NRG)]

q motivated by entanglement scaling & ∼ (
) log $

q Outlook: reducing thermal entanglement by disentangling
e.g. via unitary transformations on auxiliary state space? !- = /Ψ1 2(/Ψ1)
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