

Energy scales and exponential speed up in thermal tensor network simulations

arXiv:1801.00142 [cond-mat.str-el]

Andreas Weichselbaum

Brookhaven National Lab, Upton, New York Ludwig Maximilians University, Munich

<u>Collaboration</u> Bin-Bin Chen, Lei Chen, Ziyu Chen, Wei Li (Beihang University, Beijing)

Supported by DFG (TR12, WE4819/1-1, WE4819/2-1 Heisenberg, WE4819/3-1) Cluster of Excellence NanoSystems Initiative, Munich (NIM)

Outline

- Representation of thermal states
- Recent insights into entanglement scaling in thermal states (1D)
- Exponential energy scales
 - benefits of logarithmic β grid
 - compare to coarse graining renormalization group approaches
- Results
 - benchmark: performance (numerical cost and accuracy)
 - 1D Heisenberg chain
 - entanglement scaling at large and small β
 - specific heat and scaling exponents
 - entanglement flow diagram vs. energy scales
 - D square Heisenberg model: specific heat and entanglement
- Summary & outlook

Representation of thermal density matrix

$$\hat{\rho}(\beta) \equiv e^{-\beta H} = \sum_{s} e^{-\beta E_{s}} |s\rangle \langle s| = \sum_{s} \rho_{(\sigma_{1}\sigma_{2}...\sigma_{L}), (\sigma'_{1}\sigma'_{2}...\sigma'_{L})} |\sigma_{1}\sigma_{2}...\sigma_{L}\rangle \langle \sigma'_{1}\sigma'_{2}...\sigma'_{L}| \quad (\sigma_{l} = 1, ..., d)$$

$$\equiv \underbrace{\sigma'_{1} \sigma'_{2}}_{\sigma_{1} \sigma_{2}} \underbrace{\sigma'_{L}}_{\rho} = \underbrace{\sigma'_{L}}_{\sigma_{L}} \equiv \underbrace{\sigma'_{1} \sigma'_{2}}_{\sigma_{L} \sigma_{L}} = \underbrace{\sigma'_{1} \sigma'_{2}}_{\sigma_{L} \sigma_{L}} \underbrace{\sigma'_{L}}_{\sigma_{L} \sigma_{L}} = \underbrace{\sigma'_{L} \sigma'_{L}}_{\sigma_{L} \sigma_{L} \sigma_{L}} = \underbrace{\phi^{\dagger} \phi}_{\sigma_{L} \sigma_{L} \sigma_{L}} = \underbrace{\phi^{\dagger} \phi}_{\sigma_{L} \sigma_{L} \sigma_{L} \sigma_{L}} = \underbrace{\phi^{\dagger} \phi}_{\sigma_{L} \sigma_{L} \sigma_{L} \sigma$$

Entanglement scaling in thermal states in 1D

Many-body finite size spectrum (critical systems, or $\delta E \gg \text{gap } \Delta$) $\Rightarrow T \gtrsim \delta E \Rightarrow \beta \lesssim L$ $\rho(T) = \sum_{s} e^{-\beta E_{s}} |s\rangle \langle s|$
finite size level-spacing $\delta E \sim 1/L$ minimal requirement $= \downarrow$ δE for thermal simulations E_1 E_0 $L \sim \beta$ entropy of thermal state $S(\ell) \sim 2 \times \frac{c}{6} \log(\ell)$ Calabrese (2004) S s

More rigorous arguments based on conformal field theory (CFT)

- J. Dubail [J. Phys. A: Math. Theor. 50 (2017) 234001]
- T. Barthel [arXiv:1708.09349 [quant-ph], 2017]

allows for efficient simulations of thermal states (entanglement entropy comparable to pure states with periodic BC)

Thermal correlation length and symmetries

- □ $S(\beta) \leq \frac{c}{3} \log(\beta)$ independent of *L* for $L \to \infty$
 - finite correlation length $\xi \sim \beta$ in thermal state
- Can use finite systems to simulate thermodynamic limit
 - can use finite size MPS in $|\Psi\rangle$
 - can exploit all symmetries (abelian and non-abelian) in an optimal way

e.g. spin-half site: $X \in \{1, S\}$

Exponential energy scales

U Weak growth of block entropy of thermal state $S(\beta) \sim \frac{c}{3} \log(\beta)$

- good for numerical efficiency
- however: ill-suited for *linear* imaginary time evolution schemes e.g. Trotter: $\beta \rightarrow \beta + \tau$ with $\tau \ll \beta$

 $e^{-H\tau} \simeq e^{-H_{even}\tau} e^{-H_{odd}\tau}$

2τ

τ

small Trotter error enforces small constant au for any eta

 $\tau \quad 2\tau \quad 3\tau \quad 4\tau \quad \cdots \quad \ln\beta$

□ rather need to make bold steps in β with increasing β to see a significant change in physical properties within a critical regime natural choice: $\beta \rightarrow \Lambda \beta$ ($\Lambda > 1$) $\Rightarrow \delta S \sim \text{const.}$ simple choice: $\Lambda = 2$

 $\beta_n = \tau_0 2^n$

$$\hat{\rho}(\tau_0) \to \hat{\rho}(\tau_0) * \hat{\rho}(\tau_0) = \hat{\rho}(2\tau_0) \to \hat{\rho}(2\tau_0) * \hat{\rho}(2\tau_0) = \hat{\rho}(4\tau_0) \to \cdots$$

 4τ 8τ 16τ \cdots $\ln\beta$

exponential tensor renormalization group (XTRG)

Benefits of logarithmic temperature grid

- Simple initialization of $\rho(\tau_0)$
 - can start with *exponentially* small τ_0 such that $\rho(\tau_0) = 1 \tau_0 H$
 - simply use the MPO of $H \Rightarrow$ up to minor tweak, same MPO for $\rho(\tau_0)$
- □ No requirement for bipartite setup etc. as required for Trotter
 - simply applicable to longer range Hamiltonians
 - including (quasi-) 2D systems
 - no swap gates to deal with Trotter steps
- \Box Maximal speed to reach large β with minimal number of truncation steps
- Fine grained temperature resolution!
 - using *z*-shifted temperature grids $\beta_n = \tau_0 2^{n+z}$

- equivalent to using $\tau_0 \rightarrow \tau_0 2^z$ with $z \in [0,1[$
- easy to parallelize: independent runs for logarithmically interleaved data sets

Brief comparison to coarse graining renormalization

□ Xie et al. (PRB 2012)

Coarse-graining renormalization by higher-order singular value decomposition

- starting point: Trotter gates
- infinite tensor network
 - no clean orthogonal vector spaces
 - no symmetries used
- no interleaved temperatures
 - "However, the number of temperature points that can be studied with this approach is quite limited […], since the temperature is reduced by a factor of 2 at each contraction along the Trotter direction."
 - therefore largely favors linearized imaginary time evolution

Similarly for Czarnik et al. (PRB 2015)

Benchmark: performance

Free energy $F = -\frac{1}{\beta} \log Z$ L=18 spin-1/2 Heisenberg chain (PBC) 10⁻⁵ а Energy Relative error lő F/FI 6- 01 6- 01 6- 01 200 10⁻⁷ 400 Free -600XTRG, D*=100 10^{0} _TRG, D*=100 -- XTRG, D*=100 *=200 D*=200 SETTN, D*=100 10⁻¹³ O⁺-D*=300 ---- D*=400 -0-- D*=500 Entanglement S_E (b 2 10⁻² 10² 10¹ 10^{-1} 10⁰ XTRG = exponential tensor renormalization group

LTRG = linearized tensor renormalization group

SETTN = series expansion thermal tensor network

- XTRG is most accurate
- XTRG is clearly fastest

speed gain (for D*=100,200) LTRG $\xrightarrow{\times 10}$ SETTN $\xrightarrow{\times 10}$ XTRG

starting from the same $\rho = \rho(\tau_0)$, proceed

$$\begin{split} \rho &\to \rho * \rho \\ \rho &\to \rho * \rho(\tau_0) \\ \rho &\to \rho(\beta) * e^{-\beta H/2} \end{split}$$

Block entanglement entropy

L=200 spin-1/2 Heisenberg chain (OBC)

log. growth $S \sim \frac{c}{3} \log \beta$ with c = 0.999 Ø

This offers an alternative to obtain central charge via finite-T calculations!

In comparison to Calabrese (2004) for obtaining c from ground states with periodic BC

- comparable block entropy scaling
- no system size dependence as long as L ≥ ξ

universal $S \sim \beta^2$ behavior for extremly large temperatures where $S \ll 1$ (irrespective of the physics or dimensionality of the model!)

Specific heat and critical exponents

L=300 spin-1/2 Heisenberg chain D*=250

Entanglement flow diagram

- spectra flow towards lowenergy regime
- can identify qualitative changes for finite-T phase transitions
- here: transition to (artificial) gapped phase due to finite size

2D lattice models: benchmark

16×5 spin-1/2 Heisenberg square lattice

QWL = quantum Wang-Landau (Monte Carlo; ALPS 2011) METTS = minimally entangled typical thermal states (S. R. White, 2009; data by B. Bruognolo)

Entanglement scaling in 2D system

L = 10 spin-1/2 Heisenberg square lattice (OBC)

- also log. corrections at low temperatures (large β)
 - due to spontaneously
 broken symmetries,
 leading to the presence of
 Goldstone modes *)
 - effectively: a systematic efficient generalization to cluster expansion to 2D systems

*) also confirmed by Melitski et al. (arXiv:1112.5166 [cond-mat.str-el], 2011) or Monte Carlo simulations: A. Kallin et. al. (Phys. Rev. B 84, 165134 (2011))

Summary

- XTRG is an extremely simple, yet efficient approach to thermal states in quasi-1D
 - $\rho \rightarrow \rho * \rho$ resulting in $\beta \rightarrow 2\beta$
 - easy to parallelize for fine temperature resolution
 - no Trotter setup required whatsoever, and therefore no Trotter error or error from swap gates
 - clean exploitation of all symmetries in the Hamiltonian
 - relates to energy scales [much like the Numerical Renormalization Group (NRG)]
- $\square motivated by entanglement scaling S \sim \frac{c}{3} \log \beta$
- Outlook: reducing thermal entanglement by disentangling

e.g. via unitary transformations on auxiliary state space? $\hat{\rho} = (U\hat{\Psi})^{\dagger}(U\hat{\Psi})$

Supported by DFG (TR12, WE4819/1-1, WE4819/2-1 Heisenberg) Cluster of Excellence NanoSystems Initiative, Munich (NIM)